• Title/Summary/Keyword: Outer-rotor

Search Result 176, Processing Time 0.036 seconds

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

Characteristics of π-shaped Ultrasonic Motor

  • Lim Kee-Joe;Park Seong-Hee;Yun Yong-Jin;Park Cheol-Hyun;Kang Seong-Hwa;Lee Jong-Sub
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.241-245
    • /
    • 2006
  • In this paper, the design and characteristics of a $\pi-shaped$ ultrasonic motor that is applicable to optical zoom operation of a lens system for mobile phones are investigated. Its design and simulation of performances are carried out by FEM (finite element method) commercial software. As a simulation result, by applying voltage with single phase, a combined vibration is produced at the surface of a stator arm. A prototype of the motor is fabricated and its outer size is $8*4*2mm^3$ including the cylindrical steel rod of 2 mm in diameter as the rotor. The motor exhibits a maximum speed of 500 rpm and a power consumption of 0.3 W when driven at 20 Vpp and 64 kHz.

Optimum Design on Lobe Shapes of Gerotor Oil Pump

  • Kim, J.H.;Kim, Chul;Chang, Y.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1390-1398
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular the pump is an essential machine element that feeds lubricant oil in an automotive engine. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the two rotors. Usually the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used for the study of positive displacement pumps the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter Results obtained from the analysis enable the designer and manufacturer of the oil pump to be more efficient in this field.

Numerical and experimental analysis of temperature distribution in TEFC induction motor (전폐형 유도전동기의 온도분포에 관한 수치 및 실험적 해석)

  • Yun, Myeong-Geun;Go, Sang-Geun;Han, Song-Yeop;Lee, Yang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.457-472
    • /
    • 1997
  • We studied the temperature distribution and heat transfer characteristics of TEFC induction motor with thermal network program for more efficient design and better cooling performance of it. We knew the characteristics and the windage loss of outer cooling fan from fan test experiments. Frame axial and peripheral heat transfer coefficients and endwinding heat transfer coefficient were measured by various model experiments and then, compared with other experimental results. Frame was the main heat transfer surface, load-side and fan-side surface were not thermally symmetric from the heat flux distribution analysis. Steady and unsteady temperature distributions were measured by real motor experiments. From the results, we knew that rotor surface temperature was higher than coil temperature and the hottest spot in the coil was loadside endwinding outside surface. We compared the simulation results with those of real motor test and the two results showed a good agreement.

Methodology for Simulation of Trochoid Pump (트로코이드 펌프의 시뮬레이션 방법론)

  • Kim, Myung Sik;Chung, Won Jee;Jeong, Seung Won;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.465-471
    • /
    • 2013
  • Flow rate control is the uppermost concern for a trochoid hydraulic pump. Cavitation within the flow field of the pump has the greatest effect on the flow control during high-speed pump rotation of approximately 3500~4000 RPM. In this paper, based on AMESim$^{(R)}$ and Solid Works$^{(R)}$, we will present a method to simulate cavitation by analyzing the control factors of a trochoid pump, including the hydraulic pressure change at the outlet, flow rate based on the rotation speed of the inner rotor, leakage through the gap between the outer and inner rotors, and discharging angle of the outlet. The proposed methodology of the [cavitation simulation will enable field engineers to more easily design trochoid pumps, and will allow more concrete control over the flow rate of the pump by realizing an analysis model similar to the actual product model.

Development of an Automated Design System for Oil Pumps with Multiple Profiles(Circle, Ellipse and Involute) (원, 타원 및 인벌루트 조합된 치형형상을 갖는 로터 개발)

  • Jung, Sung-Yuen;Kim, Moon-Saeng;Cho, Hae-Yong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • A internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

Winding Inductance for Single-Phase Outer Rotor Brushless DC Motor (단상 외전형 브러시리스 모터의 권선 인덕턴스)

  • Joo, Dae-Suk;Cho, Ju-Hee;Lee, Sang-Taek;Shin, Duck-Shick;Kim, Chang-Hwan;Woo, Kyung-Il;Kim, Hee-June;Ryu, Jae-Young;Kim, Dae-Kyong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.973-974
    • /
    • 2011
  • 이 논문은 단상 외전형 브러시리스 모터의 권선 인덕턴스를 해석적인 방법으로 산정하고 실험결과와 비교하였다. 모터의 초기 설계단계에서 사용하는 자기회로해석은 매우 유용하고, 인덕턴스는 자기회로해석에서 중요한 파라미터이다. 회전자계의 영향은 쇄교 자속으로 표현할 수 있고 자속 쇄교수는 인덕턴스에 비례하기 때문이다. 따라서 모터의 특성해석을 위해서 인덕턴스 산정은 매우 중요하다. 해석적인 방법으로 권선 인덕턴스를 산정하였고 회전자의 영향을 무시하였다. 그리고 LCR 미터와 전류 변화법으로 각각 권선 인덕턴스를 측정하였다. 해석값과 전류 변화법으로 측정한 권선 인덕턴스는 비슷하였다. 이 논문에서 제시한 권선 인덕턴스의 해석적인 산정방법은 모터의 초기 설계단계에서 자기회로해석으로 특성을 해석하는 데 도움이 될 것이다.

  • PDF

Characteristics Comparison of Axial and Radial Flux Permanent Magnet Generators for 1.5kW Class Wind Power Systems (1.5kW급 풍력발전용 축자속/반경자속 영구자석 발전기의 특성 비교)

  • Ko, Kyoung-Jin;Jang, Seok-Myeong;Koo, Min-Mo;Lee, Sung-Ho;Han, Sang-Chul;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1075-1076
    • /
    • 2011
  • This paper compares performance characteristics and mechanical design specifications of outer rotor radial flux type and double-sided axial flux type permanent magnet generator for 1.5-kW class small scale wind power applications to suggest most suitable type. In order to analyze electromagnetic performances of two different type generators, this paper performs generating performance and efficiency characteristic analysis from electrical parameters obtained by using nonlinear finite element analysis using commercial software, electromagnetic losses characteristics equations and d-q characteristics equation. Considering the derived electromagnetic performance, mechanical design specifications and manufacturing cost, the best suitable model for 1.5-kW class wind power system is determined, and its experiment was performed to validate the suggested analysis method.

  • PDF

Study on Air Blower for Air Management System (소형/고효율 고분자전해질 연료공급모듈용 Air Blower 개발에 관한 연구)

  • Choi, J.H.;Jung, I.S.;Kim, J.H.;Seo, J.M.;Hur, J.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.212-214
    • /
    • 2006
  • Air Management System is composed by Pump, Fan, Compressor and Blower In general their performances depend on the capability of the motor, power converter device and controller. Especially, it should be noticed upon designing Air Management System using for Fuel Cell System, that Pump, Fan, Compressor and Blower satisfy the condition of the high performance, high efficiency, high density and reasonable price considering the safety and Economic Efficiency. In order for this, it should be studied that which kind of Motor is the most suited for Air Management System for Fuel Cell, such as Induction Motor, Brushless DC Motor, and Switched Reluctance Motor which is widely using in industry. This paper presents the designing and manufacturing of Outer Rotor Type BLDC Motor and Driver for Air Blower of Air Management System. Experimental results from a laboratory prototype arc presented to validate the feasibility of the proposed Air Blower Motor and Driver.

  • PDF