• Title/Summary/Keyword: Outer boundary

Search Result 359, Processing Time 0.024 seconds

Adhesion and Friction Forces of Micro Surface Bumps (마이크로 표면돌기의 응착력과 마찰력)

  • Cho Sung-San;Lim Je-Sung;Park Seungho;Lee Seungseop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1087-1092
    • /
    • 2004
  • Adhesion and friction forces influence adversely on performance and durability of MEMS. It has been reported that the adhesion and friction forces can be reduced with the introduction of micro surface bumps into the contacting interfaces. In this study experiments were conducted to investigate comparatively the effect of hemispherical and torus micro bumps on the adhesion and friction forces. It is confirmed that micro bumps reduce the adhesion and friction forces, and their effect is more pronounced with the bumps of smaller outer boundary radius. Moreover, the results shows that the torus bumps exhibit more rapid decrease of the adhesion and friction forces with the decrease in the outer boundary radius of bump than the hemispherical bumps. When the magnitude of adhesion force is same, the torus bumps generate smaller friction force than the hemispherical bumps. The usage of hemispherical and torus bumps to reduce the adhesion and friction forces in MEMS is discussed.

Stress and Electric Potential Fields in Piezoelectric Smart Spheres

  • Ghorbanpour, A.;Golabi, S.;Saadatfar, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1920-1933
    • /
    • 2006
  • Piezoelectric materials produce an electric field by deformation, and deform when subjected to an electric field. The coupling nature of piezoelectric materials has acquired wide applications in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and structures. In this paper, a hollow sphere composed of a radially polarized spherically anisotropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) $TiO_3$ under internal or external uniform pressure and a constant potential difference between its inner and outer surfaces or combination of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the sphere induce the potential difference. The governing equilibrium equations in radially polarized form are shown to reduce to a coupled system of second-order ordinary differential equations for the radial displacement and electric potential field. These differential equations are solved analytically for seven different sets of boundary conditions. The stress and the electric potential distributions in the sphere are discussed in detail for two piezoceramics, namely PZT _5 and (Pb) (CoW) $TiO_3$. It is shown that the hoop stresses in hollow sphere composed of these materials can be made virtually uniform across the thickness of the sphere by applying an appropriate set of boundary conditions.

Numerical Analysis for Motion Response of Modular Floating Island in Waves

  • Hyo-Jin Park;Jeong-Seok Kim;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.8-19
    • /
    • 2023
  • In recent years, modular-type floating islands have been considered as a promising option for future ocean space utilization. A modular floating island consists of a number of standardized pontoon-type modules and connectors between them. In this study, the motion responses of a modular floating island in waves was investigated based on frequency-domain numerical analysis. The numerical method is based on the potential flow theory and adopts a higher-order boundary element method with Green's function. First, motion RAOs were directly compared with the model test data by reference to validate the present numerical method. Then, numerical investigations were conducted to analyze the motion characteristics of the floating island by considering various modules shapes and arrangements. It was found that motion responses were reduced in a single central module compared to when divided central modules were used. Finally, the effect of modular arrangement on the motion responses in irregular waves was discussed. It was confirmed that multiple-layer outer modules are more effective in calming the central module than using single-layer outer modules, except under very long period conditions.

An Analysis of Acoustic Field for Turbo Chiller Discharge Duct by Using Boundary Element Method (경계요소법을 이용한 터보냉동기 덕트의 내부 음향장 해석)

  • 전완호;이준근;정필중
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.963-970
    • /
    • 2000
  • The turbo chiller uses centrifugal compressor, which operates at about 14,500 rpm. Due to the high rpm of the impeller, the noise of chiller males one of the serious problems. The possibility of the sound reduction by using absorbing material is studied in this paper. The generated sound propagates through the duct and then radiates to the outer field. So, the use of sound absorption material inside the duct is one of the effective methods. To study the effect of location of the material, we use Boundary Element Method to analyze the sound field inside the duct system. Numerical study shows the highest sound pressure region is near the elbow of curved duct. From the numerical study, it is also shown that appropriate use of sound absorbing material at this region makes 8dB reduction of the highest noise level.

  • PDF

A flow phenomenon of aquaous polymer solution in couette flow of concentric cylinder with wide circular (넓은 환상간극을 가진 동심원통속의 couette 흐름에서 고분자수용액의 유동현상)

  • 권혁칠;이성노;정진도
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.81-88
    • /
    • 1993
  • This report describes the experimental research on the flow phenomena of the aq uaous polymer solution within the Cuette flow of the concentric, cylinders type with a wide circular gap. We have investigated the phenomena of the fluid flow through torque measuring in the system that the inner cylinder is stationary and the outer one is rotating. Geometrical parameters of the system are the gap ratio of t/R$_{0}$=0.2 and Aspect ratio of l/t=100. The torque increases considerably in about 420-480RPM, So, it is considered a turbulent transition boundary, the higher plymer concentration is, the lower torque value is and the higher transition Reynolds number is. In each of the polymer concentration, the unstable boundary of torque, that is, idiosyncrasies of torque is observed around 220-280RPM. and the boundary is looked upon as a resonant vibration which is caused by the inner cylinder and tortional vibration of torque sensor.r.

  • PDF

Characteristics of Image Sticking Observed During Background Display in AC-PDP (AC PDP의 배경광 잔상특성)

  • 류재화;임성현;김동현;김중균;이호준;박정후
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • In darkroom condition, it was observed that a white picture pattern lasted several minutes leaves a recognizable trace in subsequent black background picture. Although this is not a serious problem for the most current public display or home TV applications, the image sticking should be minimized for future high quality multimedia display applications. In order to characterize this picture memory effect having relatively long time scale, spatially resolved luminance measurement and light waveform measurement have been performed. Pixels located at the outer boundary of white pattern previously displayed shows highest luminance. These cells also shows fastest ignition at the ramp up reset sequence. The luminance and ignition voltage differences between boundary cells and the other cells are increased with display duration and number of sustain-pulse. It is speculated that image sticking observed at the boundary cell is originated from the transport of charged particles and re-deposition of reactive species such as Mg, O provided from strong sustain discharge region.

The Safety Assessment to Breakwater Systems by Placing Submarine Rectangular Trench (해저 Trench 설치에 의한 방파제 시스템의 안전성 평가)

  • Kim, Sung-Duk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The present study is to estimate the effect of wave height affecting at the front face of breakwater systems, when a submarine trench is dredged in the distant offshore from outer breakwater. The wave diffraction field, which is important hydraulic factor in the ocean, is considered to be two dimensional(2D) plane and the configuration of the submarine trench on the sea bed designated by single horizontal long-rectangular system. The numerical simulation is performed by using Green function based on the boundary integral equation and meshed at moving boundary conditions. The results of present numerical simulations are illustrated by applying the normal incidence. It is shown that the ratios of wave height reduction at the front face of breakwater systems are approximately 20% by the effect of placing long trench on the sea bed. This study can effectively be utilized for safety assessment to various breakwater systems in the ocean field.

The Stress Distribution around a Circular Hole Reinforced by a Ring of Different Material in a Plate under Biaxial Loading (이질원환(異質圓環)으로 보강(補强)된 원형(圓形)구멍 주위(周圍)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-67
    • /
    • 1969
  • The effect of a circular hole reinforced by a ring of different material in a plate under biaxial loadings is considered. In this problem, an infinitely large flat is assumed. The reinforcing ring is of uniform rectangular cross-section of same thickness as the plate. The outer boundary of the ring is cemented to the inner boundary of the hole in the plate. The plate is subjected to hydrostatic tension and pure shear loadings. The stress distribution around the hole is obtained by means of the two dimensional theory of elasticity. To conform the validities of above solutions, a series of photo-elastic stress analysis for a composite model was carried out. Fair agreements were observed between two sets of values. The conclusions arrived at are as follows: 1) The theoretical solutions are exact ones for the case of infinitely large flat plate. 2) The solutions can be used for most case of engineering problem if the bonding between the plate and ring is perfect. 3) If the ratio of Young's moduli of the ring and the plate is increased, the stresses in the plate decrease whereas those in the ring increase. 4) The stress concentration near the hole has localized effect. 5) Under hydrostatic tension, maximum principal stress and maximum shear stress increase as the ratio of inner and outer diameters of the ring increases. 6) Under pure shear, the stresses depend upon angular orientations of the points and maximum principal stress and maximum shear stress appear at 45 degree. They increase as the ratio of inner and outer diameters of the ring increases.

  • PDF

EBCO - Efficient Boundary Detection and Tracking Continuous Objects in WSNs

  • Chauhdary, Sajjad Hussain;Lee, Jeongjoon;Shah, Sayed Chhattan;Park, Myong-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2901-2919
    • /
    • 2012
  • Recent research in MEMS (Micro-Electro-Mechanical Systems) and wireless communication has enabled tracking of continuous objects, including fires, nuclear explosions and bio-chemical material diffusions. This paper proposes an energy-efficient scheme that detects and tracks different dynamic shapes of a continuous object (i.e., the inner and outer boundaries of a continuous object). EBCO (Efficient Boundary detection and tracking of Continuous Objects in WSNs) exploits the sensing capabilities of sensor nodes by automatically adjusting the sensing range to be either a boundary sensor node or not, instead of communicating to its neighboring sensor nodes because radio communication consumes more energy than adjusting the sensing range. The proposed scheme not only increases the tracking accuracy by choosing the bordering boundary sensor nodes on the phenomenon edge, but it also minimizes the power consumption by having little communication among sensor nodes. The simulation result shows that our proposed scheme minimizes the energy consumption and achieves more precise tracking results than existing approaches.

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.