• Title/Summary/Keyword: Outdoor air conditioning load

Search Result 72, Processing Time 0.023 seconds

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

A Study on Prediction of Temperature and Humidity for Estimation of Cooling Load (냉방부하 추정을 위한 온도와 습도 예측에 관한 연구)

  • Yoo, Seong-Yeon;Lee, Je-Myo;Han, Kyou-Hyun;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2007
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years from 2001 to 2005 at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

DOAS/CRCP 시스템 설계

  • Jeong, Jae-Weon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.35 no.12
    • /
    • pp.41-48
    • /
    • 2006
  • For the Designing a Dedicated Outdoor Air System with Ceiling Radiant Cooling Panels the concept of a dedicated outdoor air system(DOAS) with parallel sensible cooling was born from the decoupled system concept, which can be summarized as decoupling of ventilation and air-conditioning functions, or decoupling of sensible and latent load functions. First , remove the latent loads from the outside air(OA) intake and generated in spaces using a 100% OA ventilation system(i.e., DOAS). Second, remove the space sensible loads using a parallel mechanical cooling system, such as fan coil units, conventional variable air volume , and ceiling radiant cooling panel(CRCP) independent of the ventilation system.

  • PDF

An Overview on Standards for Seasonal Performance Evaluation of Multi-type Air Conditioners (멀티형 에어컨의 기간에너지소비효율 평가규격에 관한 연구)

  • 박윤철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-100
    • /
    • 2004
  • Energy efficiency evaluation method for a multi-type air conditioning system still has not been developed. In this study, analysis on capacity range and evaluating method of standards for air conditioners was conducted with world-wide Standards. It is not a proper approach to use the standards for residential air conditioner to multi type air conditioners. Some difficulties and problems are commented in this study with overview of the standards. Through the analytic research, an evaluating method for multi type air conditioner was suggested with Integrated Part Load Value (IPLV). The suggested concept for evaluating energy efficiency during part load condition considers building load pattern and operating hours of the system at different locations. Load was weighted in IPLV to consider not only the concept of occurrence of outdoor temperature such as bin method but also operation hours of the system. An experiment about the IPLV was conducted with variable air volume ducted type air conditioning system and multi-type system through modified code tester to give a glance at quantitative value of the IPLV.

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

A Cost Analysis of the Heat Recovery Ventilator under Various Condition (열회수형 환기장치의 운전조건에 따른 경제성 평가에 관한 연구)

  • Kang, Tae-Wook;Koh, Jae-Yoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Changes in building construction methods and repairing of older buildings have reduced infiltration rate. Synthetic materials, release airborne particles and uneven healthy odor are increased. For preventing pollutants introduce fresh outdoor air into the building, simply letting fresh outdoor air into building, however, Is not a cost-effective way to ventilation. When additional ventilation is added to an existing HVAC system, the heating and cooling equipment, often cannot handle the increased load. A HRV provides a way to minimize in energy costs while introducing fresh air to a building. In this study, the economical research of HRV, made of three types of materials, are conducted. Heat recovering characteristics are studied at seasonal outdoor air conditions based on the outdoor air property condition at, Seoul in 2002. As a results, the average sensible effectiveness is 0.75 in the sensible heat exchanger and average total effectiveness is 0.65 in the total heat exchanger. The pay back period of the sensible heat exchangers are $3.2{\sim}3.5$ year and it of total heat exchanger is 2.2 years.

The Characteristic of Inverter Control by Variation of Refrigeration Load and Outdoor Temperature on Industrial Cooler (외기온도와 부하변화에 따른 산업용 냉각기의 인버터제어 특성)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.150-155
    • /
    • 2014
  • This paper presents The performance analysis of inverter control type-industrial cooler with respect to refrigeration load and outdoor temperature. Aside from materials about simulations and foundation data regarding inverter control compressors, currently, data about commercial coolers with inverter control still lack information for performance comparison. Thus, in this paper, the experiments are done to see characteristics of condensation capacity, evaporation capacity, compressor power and COP with respect to outdoor temperature and load by using a commercial inverter control cooler model. As a result, COP difference of the inverter control cooler with respect to load is 30% at the outdoor temperature of $35^{\circ}C$, 29% at the outdoor temperature of $30^{\circ}C$, 34% at $25^{\circ}C$, respectively.

Actual Energy Consumption Analysis on Temperature Control Strategies (Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control) of Secondary Side Hot Water of District Heating System (지역난방 2차측 공급수 온도 제어방안(설정온도 제어, 외기온 보상제어, 외기온 예측제어)에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki;Lee, Sang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side of District Heating System (DHS) with different hot water supply temperature control methods are compared. Three methods are Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Prediction Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side of the system, the results show that Outdoor Temperature Prediction Control method saves more energy. In general, Outdoor Temperature Prediction Control method lowers the supply temperature of hot water, and it reduces standby losses and increases overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, Outdoor Temperature Prediction Control method saves about 7.1% in comparison to Outdoor Temperature Reset Control method and about 15.7% in comparison to Set-point Control method. Also, it is found that at when partial load condition, such as daytime, the fluctuation of hot water supply temperature with Set-point Control is more severe than Outdoor Temperature Prediction Control. Therefore, it proves that Outdoor Temperature Prediction Control is more stable even at the partial load conditions.

Viability of HVAC System for Energy Conservation in High Density Internal-load Dominated Buildings (고밀도 내부부하 중심 건물의 에너지 절약적 공조방식에 대한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.530-537
    • /
    • 2010
  • With the advancement of technology, the density of IT equipment, heat load and power consumption continue to increase in high density internal-load dominated buildings as datacenters. To improve the HVAC system's energy performance and efficiency, there is a need to find methods of using outside air. Through cooling tower control that is based on outside wet-bulb temperature, the water-side economizer made it possible to achieve a maximum energy performance improvement of about 16.6% over the basic chilled water system, whereas the air-side economizer, through control based on outdoor air enthalpy, made it possible to achieve about 42.4% improvement.