• 제목/요약/키워드: Outdoor air conditioning load

검색결과 72건 처리시간 0.024초

지열을 이용한 외기부하저감시스템의 외기온도와 출구온도의 상관관계 분석 (A Study on the Correlation between Outdoor Air and Outlet Air Temperature in a Fresh Air Load Reduction System by Using Geothermal Energy)

  • 손원득;박경순
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.620-627
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we investigated the correlation between outdoor air temperature and outlet air temperature in the system. In conclusion, from the results of the high correlation we proposed a equation of regression for the outlet air temperature in the system by using linear regression analysis.

반도체 클린룸용 외기공조시스템의 수분무 가습을 이용한 에너지절감에 관한 연구 (A Study on Energy Reduction in an Outdoor Air Conditioning System for Semiconductor Manufacturing Cleanrooms Using Water Spray Humidification)

  • 송원일;김기철;유경훈;신대건;태경응;김용식;박덕준
    • 한국입자에어로졸학회지
    • /
    • 제13권2호
    • /
    • pp.65-77
    • /
    • 2017
  • In recent large-scale semiconductor manufacturing cleanrooms, the energy consumption in outdoor air conditioning (OAC) systems to heat, humidify, cool and dehumidify outdoor air(OA) represents about 40~50 % of the total cleanroom power consumption required to maintain cleanroom environment. Therefore, the assessment of energy consumption in outdoor air conditioning systems is essential for reducing the outdoor air conditioning load for a cleanroom. In the present study, an experiment with an outdoor air flow rate of $1,000m^3/h$ was conducted to compare the energy consumption in steam humidification, simple air washer, exhaust air heat recovery type air washer and dry cooling coil(DCC) return water heat recovery type air washer OAC systems. Besides, a numerical analysis was carried out to evaluate the annual energy consumption of the aforementioned four OAC systems. It was shown that the simple air washer, exhaust air heat recovery type air washer and DCC return water heat recovery type air washer OAC systems using water spray humidification were more energy-efficient than the steam humidification OAC system. Furthermore the DCC return water heat recovery type air washer OAC system was the most energy-efficient.

실물실험에 의한 순환공기 바이패스 공조시스템의 성능분석 (The Performance Analysis of a Return Air Bypass Air Conditioning System by a Simulator Experiment)

  • 신현준;김보철;김정엽
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.130-135
    • /
    • 2002
  • 바이패스 공조시스템은 냉각코일과 가열코일의 공기통과여부에 따라 크게 외기바이패스, 혼합공기 바이패스와 순환공기 바이패스 공조시스템으로 구분할 수 있다. 이 중에서 순환공기 바이패스 공조시스템은 다른 두 방식과 달리 공조되지 않은 외기가 시스템 내부로 직접 유입되지 않으므로 실내온습도 조절면에서 가장 효율적인 시스템이다. 먼저, 수치계산을 통하여 부하변동에 따른 순환공기 바이패스 공조시스템과 단일덕트 정풍량공조시스템의 실내온습도 구현능력을 비교, 평가하였다. 또한 제안 시스템의 성능분석을 위해 실물실험동을 건립하여 그 실험결과를 수치계산결과와 비교하였다. 실험을 통하여 실현열비가 0.7(현열부하만 변동)인 경우, 실내 최대현열부하에 대한 부분부하시의 실내 현열부하의 비(DSL; Design Sensible Load)가 70% 이내에서는 수치계산, simulator 실험 모두 실내상대습도는 ASHRAE STANDARD 62-1999에서 지정하는 60% 이하로 유지됨을 알 수 있었다. 결론적으로, 바이패스 공조시스템은 실내의 온습도를 정해진 범위의 부하변동내에서는 바이패스 댐퍼의 조작만으로 쾌적한 상태로 유지시킬 수 있으며, 환기회수가 많은 장손의 경우, 순환공기 바이패스에 의해 양질의 실내공기질(IAQ; Indoor Air qualify)을 확보할 수 있다.

반도체 클린룸용 배기 열회수식 에어와셔 시스템의 에너지절감에 관한 수치해석 (Numerical Analysis on Energy Reduction of an Exhaust-Air-Heat-Recovery Type Air Washer System for Semiconductor Manufacturing Clean Rooms)

  • 송근수;김형태;유경훈;손승우;신대건;김영일
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.697-703
    • /
    • 2010
  • In recent semiconductor manufacturing clean rooms, air washers are used to remove airborne gaseous contaminants from the outdoor air introduced into a clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is useful for reducing the outdoor air conditioning load required to maintain a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to cool or heat the outdoor air. In the present study, numerical analysis was conducted to evaluate the recovered heat of an exhaust air heat recovery type air washer system, which is the key part of an energy saving outdoor air conditioning system for semiconductor clean rooms. The present numerical results showed relatively good agreement with the available experimental data.

냉방과 난방 부하 감소를 위한 지하피트의 이용 가능성 (The Possibility on Utilization of Underground Pit for Reduction of Cooling and Heating Load)

  • 조성우
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.144-150
    • /
    • 2006
  • The purpose of this study is to predict outlet temperature and humidity through underground pit for the reduction of cooling load and heating load. Commonly, the underground temperature is lower than outdoor in summer but the reverse happens in winter. When the outdoor average air temperature is $25.7^{\circ}C$ during cooling periods, the average outlet air temperature through underground pit is $23.6^{\circ}C$ with 3 m-depth and 60m-length and is $22.2^{\circ}C$ with 3 m-depth and 150 m-length. When the outdoor average air temperature is $4.9^{\circ}C$ during heating periods, the average outlet air temperature through underground pit is $7.7^{\circ}C$ with 3m-depth and 60 m-length and is $10.8^{\circ}C$ with 3 m-depth and 150 m-length. The outlet air temperature is affected by more length than depth of underground pit. The diffusion ratio of outdoor humidity is $-7.7\times10^{-8}kg/s$ in cooling periods and $9.29\times10^{-7}kg/s$ in heating periods.

외기온도 변화에 따른 집단에너지 공동주택의 최적 열공급제어 알고리즘 개발에 관한 연구 (Study on the Development of Optimal Heat Supply Control Algorithm in Group Energy Apartment Building According to the Variation of Outdoor Air Temperature)

  • 변재기;이규호;최영돈;신종근
    • 설비공학논문집
    • /
    • 제23권5호
    • /
    • pp.334-341
    • /
    • 2011
  • In the present study, optimal heat supply algorithm which minimize the heat loss through the distribution pipe line in group energy apartment was developed. Variation of heating load of group energy apartment building in accord with the outdoor air temperature was predicted by the heating load-outdoor temperature correlation. Supply water temperature and mass flow rate were controlled to minimize the heat loss through distribution pipe line. District heating apartment building located in Hwaseong city, which has 1,473 households, was selected as the object building for testing the present heat supply a1gorithm. Compared to the previous heat supply system, 10.4% heat loss reduction can be accomplished by employing the present method.

인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교 (Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter)

  • 조성환;홍성기
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석 (Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler)

  • 장영수;이대영
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

반송동력과 건물층고 저감형 공조시스템 개발 (Development of HVAC System to Lower the Conveyance Energy and Building Height)

  • 김정엽;신현준
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.

Development of HVAC System to Lower the Conveyance Energy and Building Height

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.31-43
    • /
    • 2005
  • The new HVAC system is developed to lower the conveyance energy and building height using IAV(Increasing Air Volume) technique. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy. size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 percentage.