• Title/Summary/Keyword: Outdoor Navigation

Search Result 107, Processing Time 0.023 seconds

Drone Sound Identification and Classification by Harmonic Line Association Based Feature Vector Extraction (Harmonic Line Association 기반 특징벡터 추출에 의한 드론 음향 식별 및 분류)

  • Jeong, HyoungChan;Lim, Wonho;He, YuJing;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.604-611
    • /
    • 2016
  • Drone, which refers to unmanned aerial vehicles (UAV), industries are improving rapidly and exceeding existing level of remote controlled aircraft models. Also, they are applying automation and cloud network technology. Recently, the ability of drones can bring serious threats to public safety such as explosives and unmanned aircraft carrying hazardous materials. On the purpose of reducing these kinds of threats, it is necessary to detect these illegal drones, using acoustic feature extraction and classifying technology. In this paper, we introduce sound feature vector extraction method by harmonic feature extraction method (HLA). Feature vector extraction method based on HLA make it possible to distinguish drone sound, extracting features of sound data. In order to assess the performance of distinguishing sounds which exists in outdoor environment, we analyzed various sounds of things and real drones, and classified sounds of drone and others as simulation of each sound source.

Actual Analysis and Solution of Aquatic Leisure Activity Safety Accident Around Coast (연안역 수상레저활동 안전사고 실태분석 및 개선방안)

  • Jeong Jong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.247-251
    • /
    • 2006
  • By becoming 21st century which run be charactered as highly industrialized society which spreads diversification and individualization, there have been elevation of income level and increase of time for leisure activity by introducing 5 working days system. And this brings out increasing of aquatic leisure activity population and the contents of the leisure becomes very active. Static indoor activity which was the main current of the leisure activity in the past, however, it is now called for outdoor activity accompanied by the society growth and even expands towards that people get into action and experience by their own free will. With this point of view, the aquatic leisure run become a safe activity. But with a rapid growth of aquatic leisure activity, safety concerns become a serious problem. To prevent safety accident, training should be given, safety inspection and registration should be requested, and strong support of system is needed so users can have an insurance for safety accident. These complements are necessary for overall nourishment and management measure to charge in systematical safety for the users.

Design of Wearable LED Display Control System Using BLE (BLE를 이용한 웨어러블 LED 디스플레이 제어 시스템 설계)

  • Hwang, Hongtaek
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 2016
  • Wearable display market is a consistently growing field to handle a smart device with ease. Wearable display is an efficient device that can show the information to the user. In this paper, propose the scheme of a wearable display using LED and implement it including controlling remotely with BLE. Traditional outdoor LED display requires the dedicated controller and its software. Therefore, to control those LED display, it should implement a driver and its own way of communication. The proposed method is to ensure the independence and extensibility by separating driver module and communication module for controlling LED display. In addition, by adopting a short-range communication with Bluetooth 4.0 and a LED driver with low-power technology, it can be showed to control system configuration and display with a smart device.

Development of Real time distributed Object Remote Monitroing system (실시간 분산객체 원격 모니터링 시스템의 개발)

  • Moon, Myung-Ho;Koo, Kyung-Wan
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • As information communication technology developed we could monitor temperature, weather, indoor and outdoor status which we need to monitor using various sensors. Even further we could monitor our body such as Sa02 and serologic chemical tests easily at home or office. It is possible though interlocking the house medical instrument with the wireless public data network. Data from sensors can be transmitted to the distant control room and will be essentially applied through wireless public data network. In this study we measured various sensor data for the telemetry in one system. The sensing items are mainly focused on the static and dynamic behaviors of the bridge, building, instruments. The study suggests the transmit system model utilized by the wireless public data network. The suggestion in the study of telemetry system provides movement and preservation. And it will exam various condition in distance or at home.

  • PDF

CNN-based Adaptive K for Improving Positioning Accuracy in W-kNN-based LTE Fingerprint Positioning

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.217-227
    • /
    • 2022
  • In order to provide a location-based services regardless of indoor or outdoor space, it is important to provide position information of the terminal regardless of location. Among the wireless/mobile communication resources used for this purpose, Long Term Evolution (LTE) signal is a representative infrastructure that can overcome spatial limitations, but the positioning method based on the location of the base station has a disadvantage in that the accuracy is low. Therefore, a fingerprinting technique, which is a pattern recognition technology, has been widely used. The simplest yet widely applied algorithm among Fingerprint positioning technologies is k-Nearest Neighbors (kNN). However, in the kNN algorithm, it is difficult to find the optimal K value with the lowest positioning error for each location to be estimated, so it is generally fixed to an appropriate K value and used. Since the optimal K value cannot be applied to each estimated location, therefore, there is a problem in that the accuracy of the overall estimated location information is lowered. Considering this problem, this paper proposes a technique for adaptively varying the K value by using a Convolutional Neural Network (CNN) model among Artificial Neural Network (ANN) techniques. First, by using the signal information of the measured values obtained in the service area, an image is created according to the Physical Cell Identity (PCI) and Band combination, and an answer label for supervised learning is created. Then, the structure of the CNN is modeled to classify K values through the image information of the measurements. The performance of the proposed technique is verified based on actual data measured in the testbed. As a result, it can be seen that the proposed technique improves the positioning performance compared to using a fixed K value.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Practices on BIM-based indoor spatial information implementation and location-based services (BIM기반 실내공간정보구축 및 위치정보 활용 서비스 동향 고찰)

  • Kim, Min-Cheol;Jang, Mi-Kyoung;Hong, Sung-Moon;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2015
  • Increasing size and complexity of indoor structures have led to much more complication in the spatial cognition and situational awareness. Contrary to outdoor environments, occupants have limited information regarding the indoor space syntax in terms of architectural and semantic information as well as how they interact with their surroundings. The availability of such information could give conveniences to both users and managers in various aspects. In order to visualize the exact location of rooms and utilities in 3D, many studies and projects have utilized BIM models because of its promising value of representing building components. In fact, the application of BIM provides definitive spatial indoor data and creates services for indoor space management and navigation. Therefore, this paper aims to provide an overview of practices on BIM-based indoor spatial information implementation and location-based services. It is expected that enabling of technologies, data-rich content and accessibility of information products will accelerate the growth of the spatially-related markets in various fields.

Self-Localization of Autonomous Mobile Robot using Multiple Landmarks (다중 표식을 이용한 자율이동로봇의 자기위치측정)

  • 강현덕;조강현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2004
  • This paper describes self-localization of a mobile robot from the multiple candidates of landmarks in outdoor environment. Our robot uses omnidirectional vision system for efficient self-localization. This vision system acquires the visible information of all direction views. The robot uses feature of landmarks whose size is bigger than that of others in image such as building, sculptures, placard etc. Robot uses vertical edges and those merged regions as the feature. In our previous work, we found the problem that landmark matching is difficult when selected candidates of landmarks belonging to region of repeating the vertical edges in image. To overcome these problems, robot uses the merged region of vertical edges. If interval of vertical edges is short then robot bundles them regarding as the same region. Thus, these features are selected as candidates of landmarks. Therefore, the extracted merged region of vertical edge reduces the ambiguity of landmark matching. Robot compares with the candidates of landmark between previous and current image. Then, robot is able to find the same landmark between image sequences using the proposed feature and method. We achieved the efficient self-localization result using robust landmark matching method through the experiments implemented in our campus.