• Title/Summary/Keyword: Outdoor Air Conditioning System

Search Result 212, Processing Time 0.03 seconds

A Study on the Energy Conservational HVAC System Design Strategies (에너지 절약적 공조시스템 선정을 위한 기초적 연구)

  • Cho, Jin-Kyun;Hong, Min-Ho;Jeong, Cha-Su;Kim, Byung-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.58-63
    • /
    • 2007
  • Lots of needs are being paid for how to design HVAC system in large-scale buildings. Increasing awareness of energy use is main point of this research. HVAC systems' energy characteristics are not clearly identified and understood, so the optimal design of HVAC system is very important. The energy parameters of HVAC design that are system input energy, water/air moving equipments (pumps/fans) energy and outdoor air conditioning energy for IAQ are important. The purpose of this study is to provide the basic data for energy conservational HVAC design strategies.

  • PDF

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner with high-head and long-line conditions (동시냉난방 시스템 에어컨의 고낙차 장배관 운전 신뢰성 평가)

  • Kim, Tae-An;Lee, Seung-Chan;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.609-614
    • /
    • 2008
  • The heating and cooling performance of system multi-air conditioner under high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with 22 different working conditions. Experimental results were prepared on the p-h diagram. Also the oil level in the compressor was normally maintained at the safety zone for the system multi-air conditioner with high-head and long-line conditions.

  • PDF

Analysis of the Energy Consumption in Underfloor Air Distribution System depending on Outdoor Air Intake Rates (외기 도입에 따른 바닥급기 시스템의 에너지 사용량 분석)

  • Kim, Dong-Hee;Huh, Jung-Ho;Cho, Dong-Woo;Yu, Ki-Hyung;Yu, Ji-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.826-831
    • /
    • 2006
  • In this paper, we discussed the energy performance of underfloor air distribution(UFAD) and overhead air distribution system according to outdoor air intake rates in a office building. For this, the laboratory(S lab.) is selected for measuring the thermal environments of UFAD system and overhead system. Based on the measured data, the TRNSYS simulation is used to evaluate the energy performance of UFAD system and the overhead system according to outdoor air intake rates. By increasing outdoor air intake rates from required outdoor air intake rates(100CMH) to maximum air intake rates, the energy savings of UFAD system comparing with overhead system are varied $15%{\sim}25.6%$ in summer, $12.8%{\sim}19%$ in fall/spring and not varied in winter(8%). As results of simulations on stratification height and cooling set temperature, the lower the stratification height and the higher cooling set temperature, the larger cooling energy savings of UFAD comparing with overhead system according to outdoor air intake rates.

  • PDF

외기전담시스템(Dedicated Outdoor Air System)에 관하여

  • 한화택
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.32 no.7
    • /
    • pp.41-44
    • /
    • 2003
  • 실내의 냉난방부하와 필요환기량을 동시에 처리하던 기존의 전공기 공조시스템과 달리 냉난방과 환기를 분리하여 개별적으로 담당하는 외기전담시스템에 관하여 소개한다.

  • PDF

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

A Study on the Correlation between Outdoor Air and Outlet Air Temperature in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 외기온도와 출구온도의 상관관계 분석)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.620-627
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we investigated the correlation between outdoor air temperature and outlet air temperature in the system. In conclusion, from the results of the high correlation we proposed a equation of regression for the outlet air temperature in the system by using linear regression analysis.

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner for different refrigerant flow rates with high-head and long-line conditions (동시냉난방 시스템 에어컨의 냉매량 변화에 따른 고낙차 장배관 운전 신뢰성 평가)

  • Lee, Seung-Chan;Kim, Tae-An;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.304-309
    • /
    • 2008
  • The heating and cooling performances of system multi-air conditioner for various refrigerant flow rates with high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, and the two different adjustments of refrigerant flow rates were +20 % and -20 %, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with two different refrigerant flow rates. Especially, the oil level in the compressor was normally maintained at the safety zone. Experimental results were prepared on the p-h diagram.

  • PDF

Optimization of Shroud Shape and Fan Location for Increasing Exhaust Flow Rate of Air Conditioner Outdoor Unit (실외기 토출 유량 증대를 위한 Shroud 형상 및 휀 위치 최적 설계)

  • Ryu, Ki-Jung;Kim, Yoo-Yil;Lee, Kwan-Soo;Cha, Woo-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.599-605
    • /
    • 2009
  • This paper presents a numerical evaluation of the flow rate of air conditioner outdoor unit by investigating the effects of fan location and shroud shape. To determine optimal design parameters, we investigated the exhaust flow rate by changing shroud height, fan height, fan guide height, and fan width. The 3rd order central composite design was performed to select three most important parameters affecting the exhaust flow rate. According to the result of response surface method, the exhaust flow rate of the optimum model increased by 6.25% compared to that of the base model.

The Performance Analysis of a Return Air Bypass Air Conditioning System by a Simulator Experiment (실물실험에 의한 순환공기 바이패스 공조시스템의 성능분석)

  • 신현준;김보철;김정엽
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; outdoor air bypass, mixed air bypass and return air bypass system. Among bypass air conditioning systems, a return air bypass system is more effective than other two systems because it doesn't induce unconditioned outdoor air into conditioned room. The numerical study on the bypass air conditioning system shows this system can maintain indoor RH(Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. A simulator was built to compare results of a numerical experiment and those of a simulator experiment. The results of the simulator experiment was nearly same as those of the numerical experiment; when a design sensible load (the ratio of sensible load to total sensible load) was 70 percent (at this time, RSHF=0.7), indoor relative humidity (in case of both numerical experiments and simulator experiments) was maintained below 60% specified by ASHRAE STANDARD 62-1999. The bypass air conditioning system is expected to be applied to many buildings where the Percentage of latent loads or air change tate is high.

Development of HVAC System to Lower the Conveyance Energy and Building Height (반송동력과 건물층고 저감형 공조시스템 개발)

  • 김정엽;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.