• Title/Summary/Keyword: Outdated CSI

Search Result 13, Processing Time 0.019 seconds

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.