• Title/Summary/Keyword: Out-of-Vocabulary rejection

Search Result 17, Processing Time 0.019 seconds

Efficient Vocabulary Optimization Management using VCOR (VCOR를 이용한 효율적인 어휘 최적화 관리)

  • Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1436-1443
    • /
    • 2010
  • In vocabulary recognition system has it's bad points of processing vocabulary unseen triphone and then no got distribution of confidence measure by cannot normalization. According to this problem to improve suggested VCOR(Version Control for Out-of Rejection) system by out-of vocabulary rejection algorithm use vocabulary management optimization and then phone data search support. In VCOR system to provide vocabulary information efficiently offering for user's vocabulary information using extend facet classification that improved for vocabulary measure management function offering accuracy of recognition for vocabulary. In this paper proposed system performance as a result of represent vocabulary dependence recognition rate of 97.56%, vocabulary independence recognition rate of 96.23%.

A Study on Out-of-Vocabulary Rejection Algorithms using Variable Confidence Thresholds (가변 신뢰도 문턱치를 사용한 미등록어 거절 알고리즘에 대한 연구)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1471-1479
    • /
    • 2008
  • In this paper, we propose a technique to improve Out-Of-Vocabulary(OOV) rejection algorithms in variable vocabulary recognition system which is much used in ASR(Automatic Speech Recognition). The rejection system can be classified into two categories by their implementation method, keyword spotting method and utterance verification method. The utterance verification method uses the likelihood ratio of each phoneme Viterbi score relative to anti-phoneme score for deciding OOV. In this paper, we add speaker verification system before utterance verification and calculate an speaker verification probability. The obtained speaker verification probability is applied for determining the proposed variable-confidence threshold. Using the proposed method, we achieve the significant performance improvement; CA(Correctly Accepted for keyword) 94.23%, CR(Correctly Rejected for out-of-vocabulary) 95.11% in office environment, and CA 91.14%, CR 92.74% in noisy environment.

  • PDF

A Study on the Rejection Algorithm Using Generic Word Model Based on Diphone Subword Unit (다이폰 기반의 Generic Word Model을 이용한 거절 알고리즘)

  • Chung, Ik-Joo;Chung, Hoon
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.15-25
    • /
    • 2003
  • In this paper, we propose an algorithm on OOV(Out-of-Vocabulary) rejection based on two-stage method. In the first stage, the algorithm rejects OOVs using generic word model, and then in the second stage, for further reduction of false acceptance, it rejects words which have low similarity to the candidate by measuring the distance between HMM models. For the experiment, we choose 20 in-vocabulary words out of PBW445 DB distributed by ETRI. In case that the first stage is processed only, the false acceptance is 3% with 100% correct acceptance, and in case both stages are processed, the false acceptance is reduced to 1% with 100% correct acceptance.

  • PDF

In Out-of Vocabulary Rejection Algorithm by Measure of Normalized improvement using Optimization of Gaussian Model Confidence (미등록어 거절 알고리즘에서 가우시안 모델 최적화를 이용한 신뢰도 정규화 향상)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.125-132
    • /
    • 2010
  • In vocabulary recognition has unseen tri-phone appeared when recognition training. This system has not been created beginning estimation figure of model parameter. It's bad points could not be created that model for phoneme data. Therefore it's could not be secured accuracy of Gaussian model. To improve suggested Gaussian model to optimized method of model parameter using probability distribution. To improved of confidence that Gaussian model to optimized of probability distribution to offer by accuracy and to support searching of phoneme data. This paper suggested system performance comparison as a result of recognition improve represent 1.7% by out-of vocabulary rejection algorithm using normalization confidence.

Error Correction Methode Improve System using Out-of Vocabulary Rejection (미등록어 거절을 이용한 오류 보정 방법 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2012
  • In the generated model for the recognition vocabulary, tri-phones which is not make preparations are produced. Therefore this model does not generate an initial estimate of parameter words, and the system can not configure the model appear as disadvantages. As a result, the sophistication of the Gaussian model is fall will degrade recognition. In this system, we propose the error correction system using out-of vocabulary rejection algorithm. When the systems are creating a vocabulary recognition model, recognition rates are improved to refuse the vocabulary which is not registered. In addition, this system is seized the lexical analysis and meaning using probability distributions, and this system deactivates the string before phoneme change was applied. System analysis determine the rate of error correction using phoneme similarity rate and reliability, system performance comparison as a result of error correction rate improve represent 2.8% by method using error patterns, fault patterns, meaning patterns.

Reliability measure improvement of Phoneme character extract In Out-of-Vocabulary Rejection Algorithm (미등록어 거절 알고리즘에서 음소 특성 추출의 신뢰도 측정 개선)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.219-224
    • /
    • 2012
  • In the communication mobile terminal, Vocabulary recognition system has low recognition rates, because this problems are due to phoneme feature extract from inaccurate vocabulary. Therefore they are not recognize the phoneme and similar phoneme misunderstanding error. To solve this problem, this paper propose the system model, which based on the two step process. First, input phoneme is represent by number which measure the distance of phonemes through phoneme likelihood process. next step is recognize the result through the reliability measure. By this process, we minimize the phoneme misunderstanding error caused by inaccurate vocabulary and perform error correction rate for error provrd vocabulary using phoneme likelihood and reliability. System performance comparison as a result of recognition improve represent 2.7% by method using error pattern learning and semantic pattern.

Performance Comparison of Out-Of-Vocabulary Word Rejection Algorithms in Variable Vocabulary Word Recognition (가변어휘 단어 인식에서의 미등록어 거절 알고리즘 성능 비교)

  • 김기태;문광식;김회린;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2001
  • Utterance verification is used in variable vocabulary word recognition to reject the word that does not belong to in-vocabulary word or does not belong to correctly recognized word. Utterance verification is an important technology to design a user-friendly speech recognition system. We propose a new utterance verification algorithm for no-training utterance verification system based on the minimum verification error. First, using PBW (Phonetically Balanced Words) DB (445 words), we create no-training anti-phoneme models which include many PLUs(Phoneme Like Units), so anti-phoneme models have the minimum verification error. Then, for OOV (Out-Of-Vocabulary) rejection, the phoneme-based confidence measure which uses the likelihood between phoneme model (null hypothesis) and anti-phoneme model (alternative hypothesis) is normalized by null hypothesis, so the phoneme-based confidence measure tends to be more robust to OOV rejection. And, the word-based confidence measure which uses the phoneme-based confidence measure has been shown to provide improved detection of near-misses in speech recognition as well as better discrimination between in-vocabularys and OOVs. Using our proposed anti-model and confidence measure, we achieve significant performance improvement; CA (Correctly Accept for In-Vocabulary) is about 89%, and CR (Correctly Reject for OOV) is about 90%, improving about 15-21% in ERR (Error Reduction Rate).

  • PDF

A Study on the Rejection Capability Based on Anti-phone Modeling (반음소 모델링을 이용한 거절기능에 대한 연구)

  • 김우성;구명완
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.3-9
    • /
    • 1999
  • This paper presents the study on the rejection capability based on anti-phone modeling for vocabulary independent speech recognition system. The rejection system detects and rejects out-of-vocabulary words which were not included in candidate words which are defined while the speech recognizer is made. The rejection system can be classified into two categories by their implementation methods, keyword spotting method and utterance verification method. The keyword spotting method uses an extra filler model as a candidate word as well as keyword models. The utterance verification method uses the anti-models for each phoneme for the calculation of confidence score after it has constructed the anti-models for all phonemes. We implemented an utterance verification algorithm which can be used for vocabulary independent speech recognizer. We also compared three kinds of means for the calculation of confidence score, and found out that the geometric mean had shown the best result. For the normalization of confidence score, usually Sigmoid function is used. On using it, we compared the effect of the weight constant for Sigmoid function and determined the optimal value. And we compared the effects of the size of cohort set, the results showed that the larger set gave the better results. And finally we found out optimal confidence score threshold value. In case of using the threshold value, the overall recognition rate including rejection errors was about 76%. This results are going to be adapted for stock information system based on speech recognizer which is currently provided as an experimental service by Korea Telecom.

  • PDF

Sentence Rejection using Word Spotting Ratio in the Phoneme-based Recognition Network (음소기반 인식 네트워크에서의 단어 검출률을 이용한 문장거부)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.99-102
    • /
    • 2005
  • Research efforts have been made for out-of-vocabulary word rejection to improve the confidence of speech recognition systems. However, little attention has been paid to non-recognition sentence rejection. According to the appearance of pronunciation correction systems using speech recognition technology, it is needed to reject non-recognition sentences to provide users with more accurate and robust results. In this paper, we introduce standard phoneme based sentence rejection system with no need of special filler models. Instead we used word spotting ratio to determine whether input sentences would be accepted or rejected. Experimental results show that we can achieve comparable performance using only standard phoneme based recognition network in terms of the average of FRR and FAR.

  • PDF

Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks (음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • MALSORI
    • /
    • no.59
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF