• 제목/요약/키워드: Otsu's threshold selection

검색결과 9건 처리시간 0.027초

가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법 (Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions)

  • 서석태;이인근;정혜천;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.725-730
    • /
    • 2007
  • Otsu의 임계값 결정법, Huang와 Wang의 임계값 결정법 등을 포함한 그레이 레벨 히스토그램에 기반한 임계값 결정법은 영상처리 분야에서 널리 사용되어져 왔다. 이들 기법들은 그 효용성이 뛰어남에도 불구하고 하나의 임계값이 아닌 다중 임계값을 추출하는 경우 많은 연산 시간이 소요되는 단점을 가지고 있다. 즉, 임계값의 개수가 늘어남에 따라 연산 복잡도 역시 기하급수적으로 증가하게 된다 본 논문에서는 가우시안 함수를 이용하여 그레이 레벨간의 상관관계를 측정하고, 가우시안 분포함수와 그레이 레벨의 히스토그램을 결합한 가우시안형 유한 혼합 분포를 이용하여 연산 복잡도가 단순하며 효용성 있는 임계값 결정법을 제안한다. 다수의 영상에 제안한 기법을 적용한 모의실험을 통하여 효용성을 확인하고, Otsu의 임계값 결정법과 제안한 기법의 연산 복잡도 비교를 통해서 제안한 임계값 결정법의 효율성을 보인다.

영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할 (Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation)

  • 노석범;안태천;백용선;김용수
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.368-374
    • /
    • 2010
  • 영상 분할 (Image Segmentation)은 패턴 인식, 환경 인식, 문서 분석을 위한 영상 처리 과정에서 가장 기본적인 단계이다. 영상 분할 방법들 중 Otsu의 영상의 정규화된 히스토그램의 분포 정보를 이용하여 클래스 간의 분산을 최대화 시키는 임계치값을 결정하는 자동 임계치값 선정방법이 가장 잘 알려진 방법이다. Otsu의 방법은 영상의 전 영역에 대한 히스토그램을 분석함으로써 영상의 부분적인 특성을 반영하여 임계치값을 결정하기는 어렵다. 본 논문에서는 이 어려움 해소하기 위하여 Context Fuzzy c-Means 알고리즘을 이용하여 영상을 여러 개의 부분 영역으로 나누고, 정의된 부 영역에 영상 분할 기법을 적용함으로써 부 영역들에 적합한 여러 개의 임계치값을 계산함으로써 영상 분할 성능을 개선하고자 하였다.

자동적인 여러 임계값 결정 기법 (Automatic Multithreshold Selection Method)

  • 이한;박래홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1371-1374
    • /
    • 1987
  • This paper presents a new automatic multithreshold selection method which is based on the threshold selection method proposed by Otsu. This method can overcome some of limitations of the Otsu's method. An optimal threshold is selected by the new criterion so as to maximize the separability in all subregions. To get multiple thresholds, the procedure may be recursively applied to the resultant classes which are determined by the proposed evaluation measure.

  • PDF

유전자알고리즘을 이용한 영상분할 문턱값의 자동선정에 관한 연구 (Automatic Thresholding Selection for Image Segmentation Based on Genetic Algorithm)

  • 이병룡;;;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.587-595
    • /
    • 2011
  • In this paper, we focus on the issue of automatic selection for multi-level threshold, and we greatly improve the efficiency of Otsu's method for image segmentation based on genetic algorithm. We have investigated and evaluated the performance of the Otsu and Valley-emphasis threshold methods. Based on this observation we propose a method for automatic threshold method that segments an image into more than two regions with high performance and processing in real-time. Our paper introduced new peak detection, combines with evolution algorithm using MAGA (Modified Adaptive Genetic Algorithm) and HCA (Hill Climbing Algorithm), to find the best threshold automatically, accurately, and quickly. The experimental results show that the proposed evolutionary algorithm achieves a satisfactory segmentation effect and that the processing time can be greatly reduced when the number of thresholds increases.

구간값 퍼지집합을 이용한 그레이 영상에서의 임계값 선택방법 (Threshold Selection Method in Gray Images Based on Interval-Valued Fuzzy Sets)

  • 손창식;정환묵;서석태;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.443-450
    • /
    • 2007
  • 본 논문에서는 주어진 영상의 그레이 레벨에 대한 통계적 정보와 구간값 퍼지집합에 기반을 둔 새로운 임계값 선택 방법을 제안한다. 제안한 임계값 선택 방법에서 구간값 퍼지집합은 영상의 픽셀과 그들이 속하는 영역, 즉 물체와 배경 간의 관계를 더욱 명확하게 나타내기 위해서 사용되고, 통계적 정보는 구간값 퍼지집합의 규칙과 파티션을 결정하기 위해서 이용된다. 제안한 방법의 타당성을 보이기 위해 다양한 형태의 히스토그램을 가진 5개의 테스트 영상들을 기존의 임계값 선택방법인 Otsu 방법과 Huang과 Wang의 방법과 비교하였다.

흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘 (An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images)

  • 장근호;박호현;이석룡;김덕환;임명관
    • 한국멀티미디어학회논문지
    • /
    • 제13권7호
    • /
    • pp.1062-1075
    • /
    • 2010
  • 의료 영상 분야에서 영상의 분할 및 특성의 추출을 위하여 명암도 차이를 이용하는 방법이 널리 사용되고 있으며, 임계값을 결정한 뒤 이를 기준으로 영상을 이진화하는 임계값 방식이 잘 알려져 있다. 임계값 방식 중 자주 사용되는 방식이 임계값을 선택하는 데 효율적이면서, 효과적인 선정 기준을 제시하고 있는 Otsu 알고리즘이다. 하지만 흉부 X-ray 영상에 대해서는 Otsu 알고리즘의 적용으로 좋은 영상 분할 결과를 얻을 수 없다. 이는 폐 영역 주변에는 갈비뼈나 혈관과 같은 다양한 기관이 존재하여 따라서 명암도 레벨의 분포가 불명확하기 때문이다. 이러한 불명료성을 개선하기 위하여, 본 논문에서는 X-ray 영상의 배경을 배제한 후 Otsu 알고리즘을 적용하고, 명암 레벨 지도를 생성한 후, 이를 이용하여 X-ray 영상을 분할하는 효과적인 폐 영역 추출 알고리즘을 제시한다. 제안한 방법의 효과를 검증하기 위해 제안한 방법과 기존의 1차원 및 2차원 Otsu 알고리즘, 그리고 전문가의 육안 분할 결과와 비교하였다. 실험 결과, 제안한 방법이 기존 Otsu 방법에 비해 더 정확하게 폐 영역을 추출하였으며, 육안 분할 결과와 거의 비슷한 결과를 보여 주었다.

클래스 내 표준편차 기반의 문턱치 처리에 의한 영상분할 (Image Thresholding Based on Within-Class Standard Deviation)

  • 성정민;하호건;최봉열
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.216-224
    • /
    • 2013
  • 영상분할에 사용되는 문턱치 처리 방법들 중 Otsu 방법은 클래스 내 분산(within-class variance)을 이용하여 최적의 문턱치를 자동으로 추정한다. 이때, Otsu 방법은 각 클래스(class)의 통계적 분포를 표현함에 있어 분산을 사용하며, 이러한 분산은 평균으로부터 해당 자료까지의 거리 제곱으로 표현된다. 그 결과, Otsu 방법의 최적 문턱치는 분산의 크기에 큰 영향을 받으며, 분산들 중 크기가 큰 쪽으로 편향되는 문제점을 보인다. 이에 본 논문은 분산을 표준편차로 변경함으로써 이러한 현상을 감소시켰으며, 보다 정확한 문턱치를 추정할 수 있었다. 본 논문은 기존의 클래스 분산(class variance)을 클래스 표준편차(class standard deviation)로 대체하였으며, 문턱치 선택 기준으로서 클래스 내 표준편차(within-class standard deviation)을 제안하였다. 타당성을 검증하기 위해 두 개의 정규분포 히스토그램(histogram) 및 음영이 있는 영상들에 대해 모의실험을 수행하였으며, 제안된 방법을 Otsu 방법 및 기존의 방법들과 비교하였다. 또한, 객관적 성능평가(Misclassification Error)를 통해 제안된 방법의 우수성을 확인하였다.

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

세포진 자동화를 위한 이상세포의 스크리닝에 관한 연구 (A study on the Screening of the Abnormal Cells for Automated Cytodiagnosis)

  • 한영환;장영건
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권2호
    • /
    • pp.89-98
    • /
    • 1991
  • This study is concerned on the automation for cell diagnosis which has better objectivity and speed of test than human beings. Diagnosis is on the basis of shape change of abnormal Cells. Used parameters are nucleus area, nucleus perimeter, nucleus shape, cytoplasm area, nucleus/cytoplsm ratio, which was obtained using image processing technics. A new mode method is proposed on the automatic threshold selection for superior process time compared with Otsu's. Contour of the cytoplasm of abnormal cell is obtained using me- dian filter and sorel operator. The mask to get only original shape of abnormal cells is formed uslng the contour filling algorithm. In the result the normal cells are separated from the abnormal cells and the abnormal cells can be distinguished through screwing of abnormal cell's image with reference data to judge abnormal cells. Owing to this study the number of inspections which the pathologists should examine will be decreased and the time for inspection will be shortened.

  • PDF