• Title/Summary/Keyword: Otsu's threshold selection

Search Result 9, Processing Time 0.02 seconds

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.

Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation (영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할)

  • Roh, Seok-Beom;Ahn, Tae-Chon;Baek, Yong-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.368-374
    • /
    • 2010
  • Image segmentation is the basic step in the field of the image processing for pattern recognition, environment recognition, and context analysis. The Otsu's automatic threshold selection, which determines the optimal threshold value to maximize the between class scatter using the distribution information of the normalized histogram of a image, is the famous method among the various image segmentation methods. For the automatic threshold selection proposed by Otsu, it is difficult to determine the optimal threshold value by considering the sub-region characteristic of the image because the Otsu's algorithm analyzes the global histogram of a image. In this paper, to alleviate this difficulty of Otsu's image segmentation algorithm and to improve image segmentation capability, the original image is divided into several sub-images by using context fuzzy c-means algorithm. The proposed fuzzy Otsu threshold algorithm is applied to the divided sub-images and the several threshold values are obtained.

Automatic Multithreshold Selection Method (자동적인 여러 임계값 결정 기법)

  • Lee, Han;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1371-1374
    • /
    • 1987
  • This paper presents a new automatic multithreshold selection method which is based on the threshold selection method proposed by Otsu. This method can overcome some of limitations of the Otsu's method. An optimal threshold is selected by the new criterion so as to maximize the separability in all subregions. To get multiple thresholds, the procedure may be recursively applied to the resultant classes which are determined by the proposed evaluation measure.

  • PDF

Automatic Thresholding Selection for Image Segmentation Based on Genetic Algorithm (유전자알고리즘을 이용한 영상분할 문턱값의 자동선정에 관한 연구)

  • Lee, Byung-Ryong;Truong, Quoc Bao;Pham, Van Huy;Kim, Hyoung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.587-595
    • /
    • 2011
  • In this paper, we focus on the issue of automatic selection for multi-level threshold, and we greatly improve the efficiency of Otsu's method for image segmentation based on genetic algorithm. We have investigated and evaluated the performance of the Otsu and Valley-emphasis threshold methods. Based on this observation we propose a method for automatic threshold method that segments an image into more than two regions with high performance and processing in real-time. Our paper introduced new peak detection, combines with evolution algorithm using MAGA (Modified Adaptive Genetic Algorithm) and HCA (Hill Climbing Algorithm), to find the best threshold automatically, accurately, and quickly. The experimental results show that the proposed evolutionary algorithm achieves a satisfactory segmentation effect and that the processing time can be greatly reduced when the number of thresholds increases.

Threshold Selection Method in Gray Images Based on Interval-Valued Fuzzy Sets (구간값 퍼지집합을 이용한 그레이 영상에서의 임계값 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Seo, Suk-T.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.443-450
    • /
    • 2007
  • In this paper, we propose a novel threshold selection method based on statistical information on gray-levels of given images and interval-valued fuzzy sets. In the proposed threshold selection method, the interval-valued fuzzy set is used to represent more definitely the relationship between a pixel and its belonging region, that is, the object and the background. Also the statistical information on gray-level is used to determine the rules and partitions of interval-valued fuzzy sets. To show the validity of the proposed method, we compared the performance of the proposed with those of conventional methods such as Otsu's method, Huang and Wang's method applied to 5 test images with various types of histograms.

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Image Thresholding Based on Within-Class Standard Deviation (클래스 내 표준편차 기반의 문턱치 처리에 의한 영상분할)

  • Sung, Jung-Min;Ha, Ho-Gun;Choi, Bong-Yeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.216-224
    • /
    • 2013
  • The within-class variance of Otsu's method is moderate but improper in expressing class statistical distributions. Otsu's method uses a variance to represent the distribution of each class. The variance utilizes a distance square from the mean to a data. This process is not proper in denoting a real class statistical distribution because of the distance square. In this paper, to express more exact class statistical distributions, the within-class standard deviation as a criterion for threshold selection is proposed and then the optimal threshold is determined by minimizing it. In order to have validity, it is shown through the experimental results that the proposed method was more superior to the counterparts.

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

A study on the Screening of the Abnormal Cells for Automated Cytodiagnosis (세포진 자동화를 위한 이상세포의 스크리닝에 관한 연구)

  • 한영환;장영건
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 1991
  • This study is concerned on the automation for cell diagnosis which has better objectivity and speed of test than human beings. Diagnosis is on the basis of shape change of abnormal Cells. Used parameters are nucleus area, nucleus perimeter, nucleus shape, cytoplasm area, nucleus/cytoplsm ratio, which was obtained using image processing technics. A new mode method is proposed on the automatic threshold selection for superior process time compared with Otsu's. Contour of the cytoplasm of abnormal cell is obtained using me- dian filter and sorel operator. The mask to get only original shape of abnormal cells is formed uslng the contour filling algorithm. In the result the normal cells are separated from the abnormal cells and the abnormal cells can be distinguished through screwing of abnormal cell's image with reference data to judge abnormal cells. Owing to this study the number of inspections which the pathologists should examine will be decreased and the time for inspection will be shortened.

  • PDF