• Title/Summary/Keyword: Osteoporotic fracture

Search Result 137, Processing Time 0.025 seconds

Vertebroplasty Utilizing Percutaneous Vertebral Body Access (PVBA) Technique for Osteoporotic Vertebral Compression Fractures in the Middle Thoracic Vertebrae

  • Cho, Yong-Jun;Choi, Jong-Hun;Cho, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.3
    • /
    • pp.161-165
    • /
    • 2007
  • Objective : Percutaneous approach to the middle thoracic vertebra through the transpedicular route for the patients with osteoporotic vertebral compression fractures is difficult due to the small size of the pedicle and parasagittally oriented vertebra body anatomy. The percutaneous vertebral body access [PVBA] technique utilizing the posterolateral extrapedicular approach avoids the pedicle and provides direct access to the vertebral body. The objective of this study is to evaluate the efficacy of the vertebroplasty utilizing PVBA technique for osteoporotic vertebral compression fractures in the middle thoracic vertebrae. Methods : A retrospective review was done on 20 patients who underwent vertebroplasty utilizing PVBA technique performed for painful osteoporotic compression fracture in the middle thoracic vertebrae at 22 levels from May 2003 to June 2006. The average amount of the injected cement was 1.5-2.5ml. The postprocedural outcome was assessed using a visual analogue scale [VAS]. Results : The treated vertebrae were T5 [1 level], T6 [5 levels], 17 [7 levels], and T8 [9 levels]. The compression rate and kyphotic angle were improved after procedure from $18%{\pm}13.4$ to $16%{\pm}13.8$ [p > 0.05] and from $6.9^{\circ}{\pm}6.7$ to $6.6^{\circ}{\pm}6.2$ [p>005], respectively. Preprocedural VAS was $8.2{\pm}0.70$ and was decreased to $2.1{\pm}1.02$ [p < 0.01] after treatment. Postprocedural cement leakage was noted in 3 levels [13.7%]. There were no cases of leakage to epidural space or neural foramen, segmental artery injury, and pneumothorax. Conclusion : These results suggest that the complication rates are low and good results can be achieved with vertebroplasty utilizing PVBA technique for the osteoporotic vertebral compression fractures especially in the middle thoracic vertebrae.

Efficacy and Safety of Balloon Kyphoplasty in the Treatment of Osteoporotic Vertebral Body Compression Fractures : Compared with Vertebroplasty

  • Yi, Won-Jae;Lee, Jung-Ho;Lee, Hyuk-Gee;Ryu, Kee-Young;Kang, Dong-Gee;Kim, Sang-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • Objective : Kyphoplasty and vertebroplasty are two minimally invasive procedures for osteoporotic vertebral compression fractures. The purpose of this retrospective study was to compare the radiological findings and clinical outcomes between two procedures. Methods : Osteoporotic vertebral fractures were treated in 76 vertebrae, using kyphoplasty (n=35 vertebrae) and using vertebroplasty (n=41 vertebrae). Fractured vertebral bodies were diagnosed by correlating the clinical symptoms with radiologic study. The responses of pain symptoms were measured by a self-reported Visual Analog Scale (VAS) score. Plain X-rays were checked preoperatively and postoperatively at admission and 6 months. The vertebral body height and kyphotic angle were measured to assess the reduction of the sagittal alignment. Results : The mean pain scores were decreased significantly for both procedures postoperatively, but there were no significant differences between two groups. Kyphoplasty led to a significant reduction of the vertebral body height and improvement of kyphotic angle. There were no neurological deficits after kyphoplasty, but one patient experienced paraparesis after vertebroplasty. During the 6 months follow-up both procedures provided stabilization of the sagittal alignment. Conclusion : Kyphoplasty and vertebroplasty are considered effective minimally invasive techniques for the stabilization of osteoporotic vertebral body fractures, leading to a statistically significant reduction in pain. Kyphoplasty significantly restore sagittal alignment. Also, complications and the incidence of bone cement leakage are significantly lesser than vertebroplasty. Therefore, kyphoplasty seems to be reasonable procedure for osteoporotic vertebral body compression fractures when medical treatment fail.

In vivo Evaluation of Osteoporotic Fracture Prevention of the site to which low Intensity Ultrasound is Irradiated using Mechanical Strength Simulations (역학적 강도 분석을 이용한 저강도 초음파의 조사 부위의 골다공증 골절 방지 효과 평가)

  • Woo, Dae-Gon;Kim, Chi-Hoon;Park, Ji-Hyung;Ko, Chang-Young;Kim, Han-Sung;Kim, Jin-Man;Kim, Sang-Hee;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Purpose: The aim of present study is to evaluate a possibility of clinical application for the effect of low intensity ultrasound stimulation (LIUS) in mechanical characteristics of bone on osteoporotic fractures prevention. Materials and Methods: Eight virgin ICR mice (14 weeks old, approximate weight 25g) were ovariectomized (OVX) to induce osteoporosis. The right hind limbs were then stimulated with LIDS (US Group), whereas left hind limbs were not stimulated (CON Group). Both hind limbs of all mice were scanned by in-vivo micro-CT to acquire two-dimensional (2D) images at 0 week before stimulation and 3 weeks and 6 weeks after stimulation. Three-dimensional (3D) finite element (FE) models generated by scanned 2D images were used to determine quantitatively the effect of LIUS on strength related to bone structure. Additionally, distributions of Hounsfield units and elastic moduli, which are related to the bone quality, for the bones in the US and CON groups were determined to analyze quantitatively a degree of improvement of bone qualities achieved by LIUS. Results: The result of FE analysis showed that the structural strength in US Group was significantly increased over time (p<0.05), while that in CON Group was statistically constant over time (p>0.05). High values of Hounsfield units obtained from voxels on micro-CT images and high values of elastic moduli converted from the Hounsfield units were dominantly appeared in US Group compared with those in CON Group. Conclusion: These finding indicated that LIUS would improve the mechanical characteristics of osteoporotic bone via the effects of bone structure (bone strength) and quality (Hounsfield unit and elastic modulus). Therefore, the LIUS may decrease effectively the risk of osteoporotic fracture in clinics.

The Diagnosis and Treatment of Osteoporosis (골다공증의 진단과 치료)

  • Moon, Jun-Sung;Won, Kyu-Chang
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration of bone tissue leading to enhanced bone fragility and fracture risk, is a major public health problem. The diagnostic methods for osteoporosis include simple radiography, bone scan, DXA (Dual energy X-ray Absortiometry) and biochemical markers of bone turnover. Optimal treatment and prevention of osteoporosis require modification of risk factors, particularly smoking cessation, adequate physical activity, and attention to diet, in addition to pharmacologic intervention. The estrogens and raloxifene both prevent bone loss in postmenopausal women, and the estrogens probably also decrease the risk of first fracture. There is good evidence that raloxifene prevents further fractures in postmenopausal women who already have had fractures and some evidence that estrogen does as well. Bisphosphonate prevents bone loss and reduces fractures in healthy and osteoporotic postmenopausal women and in osteoporotic men as well. Risedronate is more potent and has fewer side effects than alendronate and reduces the incidence of fractures in osteoporotic women. Calcitonin increases bone mineral density in early postmenopausal women and men with idiopathic osteoporosis, and also reduces the risk of new fractures in osteoporotic women. All of the agents discussed above prevent bone resorption, whereas teriparatide and strontium increase bone formation and are effective in the treatment of osteoporotic women and men. New avenues for targeting osteoporosis will emerge as our knowledge of the regulatory mechanisms of bone remodeling increases, although issues of tissue specificity may remain to be addressed.

  • PDF

Early Bone Marrow Edema Pattern of the Osteoporotic Vertebral Compression Fracture : Can Be Predictor of Vertebral Deformity Types and Prognosis?

  • Ahn, Sung Eun;Ryu, Kyung Nam;Park, Ji Seon;Jin, Wook;Park, So Young;Kim, Sung Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.137-142
    • /
    • 2016
  • Objective : To evaluate whether an early bone marrow edema pattern predicts vertebral deformity types and prognosis in osteoporotic vertebral compression fracture (OVCF). Methods : This retrospective study enrolled 64 patients with 75 acute OVCFs who underwent early MRI and followed up MRI. On early MRI, the low SI pattern of OVCF on T1WI were assessed and classified into 3 types (diffuse, globular or patchy, band-like). On followed up MRI, the vertebral deformity types (anterior wedge, biconcave, crush), degree of vertebral body height loss, incidence of vertebral osteonecrosis and spinal stenosis were assessed for each vertebral fracture types. Results : According to the early bone marrow edema pattern on T1WI, 26 vertebrae were type 1, 14 vertebrae were type 2 and 35 vertebrae were type 3. On followed up MRI, the crush-type vertebral deformity was most frequent among the type 1 OVCFs, the biconcave-type vertebral deformity was most frequent among the type 2 OVCFs and the anterior wedge-type vertebral deformity was most frequent among the type 3 OVCFs (p<0.001). In addition, type 1 early bone marrow edema pattern of OVCF on T1WI were associated with higher incidence of severe degree vertebral body height loss, vertebral osteonecrosis and spinal stenosis on the follow up MRI. Conclusion : Early bone marrow edema pattern of OVCF on T1WI, significant correlated with vertebral deformity types on the follow up MRI. The severe degree of vertebral height loss, vertebral osteonecrosis, and spinal stenosis were more frequent in patients with diffuse low SI pattern.

Implant Removal after Percutaneous Short Segment Fixation for Thoracolumbar Burst Fracture : Does It Preserve Motion?

  • Kim, Hyeun Sung;Kim, Seok Won;Ju, Chang Il;Wang, Hui Sun;Lee, Sung Myung;Kim, Dong Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.2
    • /
    • pp.73-77
    • /
    • 2014
  • Objective : The purpose of this study was to evaluate the efficacy of implant removal of percutaneous short segment fixation after vertebral fracture consolidation in terms of motion preservation. Methods : Between May 2007 and January 2011, 44 patients underwent percutaneous short segment screw fixation due to a thoracolumbar burst fracture. Sixteen of these patients, who underwent implant removal 12 months after screw fixation, were enrolled in this study. Motor power was intact in all patients, despite significant vertebral height loss and canal compromise. The patients were divided into two groups by degree of osteoporosis : Group A (n=8), the non-osteoporotic group, and Group B (n=8), the osteoporotic group. Imaging and clinical findings including vertebral height loss, kyphotic angle, range of motion (ROM), and complications were analyzed. Results : Significant pain relief was achieved in both groups at final follow-up versus preoperative values. In terms of vertebral height loss, both groups showed significant improvement at 12 months after screw fixation and restored vertebral height was maintained to final follow-up in spite of some correction loss. ROM (measured using Cobb's method) in flexion and extension in Group A was $10.5^{\circ}$ ($19.5/9.0^{\circ}$) at last follow-up, and in Group B was $10.2^{\circ}$ ($18.8/8.6^{\circ}$) at last follow-up. Both groups showed marked improvement in ROM as compared with the screw fixation state, which was considered motionless. Conclusion : Removal of percutaneous implants after vertebral fracture consolidation can be an effective treatment to preserve motion regardless of osteoporosis for thoracolumbar burst fractures.

Postoperative Results of Kyphoplasty for Osteoporotic Vertebral Compression Fractures

  • Yoon, Won-Ki;Roh, Sung-Woo;Rhim, Seung-Chul;Lee, Chun-Sung;Kwon, Soon-Chan;Kim, Jeoung-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.253-257
    • /
    • 2005
  • Objective: We analyze pain relief, deformity correction and complication rate after percutaneous kyphoplasty for osteoporotic vertebral compression fractures. Methods: The authors retrospectively reviewed medical records and radiological findings of 32 patients who underwent percutaneous kyphoplasty for osteoporotic vertebral compression fractures. Results: The patients had significant pain improvement with the procedure. The visual analogue scale score reduced from 8.6 to 3.4 significantly after the procedure. The midline vertebral body height significantly increased postoperatively, but mean kyphotic angle did not. There was no serious complication except one case of epidural cement leakage without neurological impairment. Conclusion: Balloon kyphoplasty safely can reduce severe back pain and returned geriatric patients to higher activity levels. The midline vertebral height is restored significantly. However kyphotic deformity correction is not significant as contrary to what we expected from the present study before it was carried out.

Acute Displaced Fracture of Lateral Acromion after Reverse Shoulder Arthroplasty: A Case Report and Surgical Technique

  • Cho, Chul-Hyun;Jung, Jae-Won;Lim, Young-Jae;Na, Sang-Soo;Kim, Du-Han
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.2
    • /
    • pp.106-109
    • /
    • 2019
  • Acromial fractures are well-documented complications subsequent to reverse shoulder arthroplasty (RSA), and most appear as stress fractures with no history of single trauma. To date, no study has reported the occurrence of acute displaced acromial fracture due to sudden strong deltoid contraction during heavy work. Displacement of the fracture results in a challenging surgery since it is difficult to obtain adequate fixation in thin and osteoporotic bones. We report a rare case of acute displaced acromial fracture after successful RSA treatment, using a novel technique of open reduction and internal fixation, applying two 4.5 mm cannulated screws and lateral clavicle precontoured plate.

What Effects Does Necrotic Area of Contrast-Enhanced MRI in Osteoporotic Vertebral Fracture Have on Further Compression and Clinical Outcome?

  • Lee, Ja Myoung;Lee, Young Seok;Kim, Young Baeg;Park, Seung Won;Kang, Dong Ho;Lee, Shin Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.181-188
    • /
    • 2017
  • Objective : The objective of this study was to analyze the correlation between further compression and necrotic area in osteoporotic vertebral fracture (OVF) patients with contrast-enhanced magnetic resonance imaging (CEMRI). In addition, we investigated the radiological and clinical outcome according to the range of the necrotic area. Methods : Between 2012 and 2014, the study subjects were 82 OVF patients who did not undergo vertebroplasty or surgical treatment. The fracture areas examined on CEMRI at admission were defined as edematous if enhancement was seen and as necrotic if no enhancement was seen. The correlation between further compression and the necrotic and edematous areas of CEMRI, age, and bone mineral density was examined. Also, necrotic areas were classified into those with less than 25% (non-necrosis group) and those with more than 25% (necrosis group) according to the percentages of the entire vertebral body. For both groups, further compression and the changes in wedge and kyphotic angles were examined at admission and at 1 week, 3 months, and 6 months after admission, while the clinical outcomes were compared using the visual analog scale (VAS) and Eastern Cooperative Oncology Group (ECOG) performance status grade. Results : Further compression was $14.78{\pm}11.11%$ at 1 month and $21.75{\pm}14.43%$ at 6 months. There was a very strong correlation between the necrotic lesion of CEMRI and further compression (r=0.690, p<0.001). The compression of the necrosis group was $33.52{\pm}12.96%$, which was higher than that of the non-necrosis group, $14.96{\pm}10.34%$ (p<0.005). Also, there was a statistically significantly higher number of intervertebral cleft development and surgical treatments being performed in the necrosis group than in the non-necrosis group (p<0.005). Moreover, there was a statistical difference in the decrease in the height of the vertebral body, and an increase was observed in the kyphotic change of wedge angle progression. There was also a difference in the VAS and ECOG performance scales. Conclusion : The necrotic area of CEMRI in OVF had a strong correlation with further compression over time. In addition, with increasing necrosis, intervertebral clefts occurred more frequently, which induced kyphotic changes and resulted in poor clinical outcomes. Therefore, identifying necrotic areas by performing CEMRI on OVF patients would be helpful in determining their prognosis and treatment course.