• 제목/요약/키워드: Osteogenic activity

검색결과 151건 처리시간 0.028초

기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향 (The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells)

  • 배성민;경희문;성재현
    • 대한치과교정학회지
    • /
    • 제26권3호
    • /
    • pp.291-299
    • /
    • 1996
  • 교정력은 치아이동과 악골성장을 조절하는 기계적 자극이며, 이러한 기계적 자극에 골세포가 반응하므로써 치조골과 악골의 개조가 일어난다. 이러한 기계적 자극은 크게 압축력과 인장력으로 대별된다. 따라서 본 연구는 인장력 및 압축력의 서로다른 기계적자극이 세포활성에 미치는 차이를 알아보기 위하여 조골세포주 MC3T3-E1 세포를 24well 배양접시에 well당 $2{\times}10^4$개의 세포를 넣어 배양한 후, 밀생상태가 되었을때 Diaphragm pump을 사용하여, $25g/cm^2$$300g/cm^2$의 압축력과 $-25g/cm^2$$-300g/cm^2$의 인장력을 지속적으로 가하였다. 배양한 후 각각 4일, 6일, 10일, 14일, 18일, 20일째에 ALP활성을 측정한 결과 같은 크기의 압력에서는 인장력에 비해 압축력을 가한 경우에서 ALP활성도가 증가되었으나, 세포는 기계적 자극의 양상 즉 압축력과 인장력을 구별하여 다르게 반응을 하지는 않는 것 같았다. 인장력과 압축력 모두에서 ALP활성도는 시간이 지남에 따라 대조군 수준으로 돌아왔다. 이는 기계적 자극은 세포의 증식과 분화가 왕성한 시기에 세포활성도에 더 크게 영향을 미치는 것으로 생각되며, 압축력과 인장력에 관계없이 기계적 자극의 양이 클수록 ALP활성도의 최고치 도달시간이 지연되어, 기계적 자극의 세기는 세포 활성도에 영향을 미칠 것으로 사료된다.

  • PDF

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

키토산이 치주인대 섬유아세포에 미치는 영향 (The effects of chitosan on the human periodontal ligament fibroblasts in vitro)

  • 백정원;이현정;유윤정;조규성;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

Surface characteristics and bioactivity of an anodized titanium surface

  • Kim, Kyul;Lee, Bo-Ah;Piao, Xing-Hui;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.198-205
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods: Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse $MC_3T_3-E_1$ cells. Results: The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide ($TiO_2$) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized $TiO_2$ surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions: These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells.

In Vitro and In Vivo Bone-Forming Effect of a Low-Molecular-Weight Collagen Peptide

  • Jae Min Hwang;Mun-Hoe Lee;Yuri Kwon;Hee-Chul Chung;Do-Un Kim;Jin-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.415-424
    • /
    • 2024
  • This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 ㎍/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.

배양된 치유두 유래세포의 조골활성 및 골기질 형성의 평가 (EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN DENTAL PAPILLA-DERIVED CELLS)

  • 박봉욱;변준호;최문정;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권4호
    • /
    • pp.279-288
    • /
    • 2007
  • In the present study, we focused on stem cells in the dental papilla of the tooth germ. The tooth germ, sometimes called the tooth bud, is the primordial structure from which a tooth is formed. The tooth germ consists of the enamel organ, the dental papilla, and the dental follicle. The dental papilla lies below a cellular aggregation of the enamel organ. Mesenchymal cells within the dental papilla are responsible for formation of dentin and pulp of a tooth. Tooth germ disappears as a tooth is formed, but that of a third molar stays in the jawbone of a human until the age of 10 to 16, because third molars grow slowly. Impacted third molar tooth germs from young adults are sometimes extracted for orthodontic treatment. In the present study, we evaluated the osteogenic activity and mineralization of cultured human dental papilla-derived cells. Dental papillas were harvested from mandible during surgical extraction of lower impacted third molar from 3 patients aged 13-15 years. After passage 3, the dental papilla-derived cells were trypsinized and subsequently suspended in the osteogenic induction DMEM medium supplemented with 10% fetal bovine serum, 50 g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate at a density of $1\;{\times}10^6\;cells/dish$ in a 100-mm culture dish. The dental papilla-derived cells were then cultured for 6 weeks and the medium was changes every 3 days during the incubation period. Dental papilla-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 7 of culture period, then decreased in intensity during the culture period. ALP mRNA level was largely elevated at 1 weeks and gradually decreased with culture time. Osteocalcin mRNA expression appeared at day 14 in culture, after that its expression continuously increased in a time-dependent manner up to day 28. The expression remained constant thereafter. Runx2 expression appeared at day 7 with no detection thereafter. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. Osteocalcin secretion was detectable in the culture medium from 1 week. The secretion of osteocalcin from dental papilla-derived cells into the medium greatly increased after 3 weeks although it showed a shallow increase by then. In conclusion, our study showed that cultured human dental papilla-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix.

스타틴(statin) 약물이 성체줄기세포의 골분화에 미치는 영향 (An Analysis for Effects of Stain Family Drugs on Osteogenic Differentiation using Human Periosteum-derived Mesenchymal Stem Cells)

  • 문동규;윤정원;김보규;이아람;문선영;변준호;황선철;우동균
    • 생명과학회지
    • /
    • 제29권12호
    • /
    • pp.1337-1344
    • /
    • 2019
  • 골다공증의 진행은 뼈질량 감소와 골절위험 증가를 야기한다. 골다공증은 노인 인구에서 흔하며, 최근 들어 급속한 고령화 사회로 인해 그 환자수도 동반하여 크게 증가하고 있다. 현재 처방되는 골다공증 치료제의 대부분은 파골세포 억제 효과에 기반하여 골흡수를 방지한다. 그러나 이러한 골다공증 치료제는 새로운 뼈형성을 증가시키지는 못하며 수반되는 여러 부작용도 보고되고 있다. 따라서 골다공증의 새로운 제어와 치료법 개발을 위해 성체줄기세포의 골세포 분화유도와 조골세포 활성을 도모하는 재생의학적 접근이 활발히 연구되고 있다. 스타틴(statin) 계열 약물은 혈중 콜레스테롤 강하제로 심혈관 질환에 흔히 처방되는 치료제이다. 흥미롭게도 최근 일련의 연구에서 이러한 스타틴이 조골세포 활성에 긍정적인 영향을 주어 뼈형성을 촉진한다는 보고가 발표되고 있다. 따라서, 본 연구에서는 이러한 스타틴 약물이 인체 골막유래 성체줄기세포의 골세포 분화과정이나 조골세포 활성에 영향이 있는 지를 분석하였다. 현재 임상적으로 처방되는 총 7 종류의 스타틴 약물에 대해, 골막유래 성체줄기세포의 골세포 분화과정에서 조골세포 활성과 관련된 초기와 후기 표지자인 alkaline phosphatase의 활성과 칼슘 침착을 각각 분석하였다. 본 연구에서 일부 스타틴(pitavastatin과 pravastatin)은 약하지만 뼈형성을 증가시키는 효과가 있음을 알 수 있었다. 이러한 연구결과는 스타틴이 골막유래 줄기세포로부터 골세포로의 분화나 조골세포 활성을 조절할 수 있는 물질이 될 수 있으며, 이러한 약물이 골세포분화나 재생의학의 새로운 조절 물질로서 골다공증 치료에 응용될 수 있음을 제시한다.

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin;Han, Younho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.162-168
    • /
    • 2020
  • Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진 (Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells)

  • 정나라;최영현
    • 한국해양바이오학회지
    • /
    • 제15권1호
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

고려엉겅퀴(Cirsium setidens (Dunn) Nakai)의 구성성분 및생리활성에 관한 리뷰 (A review on Phytochemistry and pharmacological Activities of Cirsium setidens (Dunn) Nakai)

  • 조미애;김범정
    • 대한본초학회지
    • /
    • 제38권4호
    • /
    • pp.31-43
    • /
    • 2023
  • Objectives : The objective of this study was to investigate the phytochemistry and pharmacological activities of Cirsium setidens. Methods : Domestic and international articles about Cirsium setidens were investigated. A review was perfoemed via DB searching engine such as Sci.Direct, Springer, DBpia, KISS, Google scholar, Kipris, and so on. Total 73 listed literature were classified by compound analysis and pharmacological efficacy. Results : C. setidens contains pectolinarin and its glycoside, pectolinarigenin as index compounds, and linarin, apigenin, diosmetin, scopoletin, acacetin, cirsimarin, cirsimaritin, setidenosides A and B, silymarin, hispidulin, 92 volatile compounds, and 15 fatty acids. The Pharmacological activities of C. setidens has been reported to inhibit of platelet aggregation and fat accumulation in the liver, inhibit to hepatitis, anti-cancer, antibacterial, skin improvement, hair growth, liver protection, anti-diabetic, anti-inflammatory, sedative. Also, It has been reported the effect of cholesterol-lowering and anti-obesity, neuroprotective effects, increasing human stem cell viability, inhibiting osteoclast formation and osteogenic differentiation. Conclusion : This reviews showed that C. setidens which has been traditionally used for the treatment of inflammation and hypertension, has anticancer and river protective effect, as well as hair loss and diet. In order to maximize the efficacy of C. setidens, research has also begun on the effect of processing processes such as fermentation or fine powdering and combining natural plant resources.