• 제목/요약/키워드: Osteocytes

검색결과 54건 처리시간 0.03초

BONES HAVE EARS

  • Stephen C. Cowin
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2002
  • The movement of bone fluid from the region of the bone vasculature through the canaliculi and the lacunae of the surrounding mineralized tissue accomplishes three important tasks. First it transports nutrients to the osteocytes in the lacunae buried in the mineralized matrix. Second, it carries away the cell waste. Third, the bone fluid exerts a force on the cell process, a force that is large enough for the cell to sense. This is probably the basic mechanotrasduction mechanism in bone, the way in which bone senses the mechanical load to which it is subjected. The mechanism of bone fluid flow are described below with particular emphasis on mechanotransduction. Also described is the cell to cell communication by which higher frequency signals might be transferred, a potential mechanism in bone by which the small whole tissue strain is amplified so the bone cells can respond to it. One of the conclusions is that higher frequency low amplitude strains can maintain bone as effectively as low frequency low amplitude strains can maintain bone as effectively as low frequency high amplitude strains. This mechanism has many similarities with the mechanotransduction of acoustical signals in the ear. These conclusion leads to a paradigm shift in how to treat osteoporosis and how to cope with microgravity.

  • PDF

한우의 흉골 발생에 관한 형태학적 연구 (A morphological study on the sternal development of Korean cattle)

  • 이한경;양홍현;백영기
    • 대한수의학회지
    • /
    • 제29권2호
    • /
    • pp.11-18
    • /
    • 1989
  • This study was undertaken to obtain basic data of the sternal development in Korean native cattle from the earliest sternal formation to the ossification using histological and histochemical methods. Thrity three sterna were collected from a series of embryos and fetuses ranging from 11 to 225mm (estimated age 37~120days) in crown rump length. The bilateral sternal bars were observed in the 2nd group(CRL 21~3mm) of Korean cattle embryos. Those bars initiated to be fused in the 3rd group (CRL 31~4mm) and completed in the 7th group(CRL 71~80mm). The ossification centers were detected in the 8th group(CRL 81~90mm) also bilateral ossification centers were found in the same group. The typical epiphyseal plates, endochondral bone and calcium deposit were found in the 9th group(CRL 91~100mm). Osteocytes, osteoblasts, osteoclasts and myeloid cells appeared in ossification centers in the 10th group(more than CRL 101mm). The alcianophility responded markedly in the 9th group that was decreased and showed slightly positive reaction in territorial matrix of the 10th group. Marked positive reaction to PAS was observed in bony trabeculae in the 10th group. The positive reaction to calcium deposit by trichrome stain was observed initially in the hypertrophied zone of epiphyseal plate in the 9th group and was conspicuous in the calcified zone of epiphyseal plate in the 10th group. The 1st positive reaction to the von Kossa stain was observed in the 9th group.

  • PDF

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

TonEBP suppresses adipocyte differentiation via modulation of early signaling in 3T3-L1 cells

  • Kim, Soo Jin;Kim, Taehee;Choi, Han Na;Cho, Eun Jung;Park, Jin Bong;Jeon, Byeong Hwa;Lee, Sang Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.649-655
    • /
    • 2016
  • TonEBP belongs to the Rel family of transcription factors and plays important roles in inflammation as well as kidney homeostasis. Recent studies suggest that TonEBP expression is also involved in differentiation of several cell types such as myocytes, chondrocytes, and osteocytes. In this study, we investigated the roles of TonEBP during adipocyte differentiation in 3T3-L1 cells. TonEBP mRNA and protein expression was dramatically reduced during adipocyte differentiation. Sustained expression of TonEBP using an adenovirus suppressed the formation of lipid droplets as well as the expression of FABP4, a marker of differentiated adipocytes. TonEBP also inhibited the expression of $PPAR{\gamma}$, a known master regulator of adipocytes. RNAi-mediated knock down of TonEBP promoted adipocyte differentiation. However, overexpression of TonEBP did not affect adipogenesis after the initiation of differentiation. Furthermore, TonEBP expression suppressed mitotic clonal expansion and insulin signaling, which are required early for adipocyte differentiation of 3T3-L1 cells. These results suggest that TonEBP may be an important regulatory factor in the early phase of adipocyte differentiation.

LOADED IMPLANT와 UNLOADED IMPLANT의 조직학적 비교 연구 (A HISTOLOGIC COMPARATIVE STUDY OF LOADED AND UNLOADED TITANIUM IMPLANTS)

  • 김영수;고재승;황성명
    • 대한치과보철학회지
    • /
    • 제29권2호
    • /
    • pp.1-16
    • /
    • 1991
  • In order to see the possible effect of the functional load-bearing after osseointegration of the titanium root form implant in dog a histologic study was conducted. One side of lower jaw was surgically prepared edentulousness and titanium implants were inserted. Some implants were functionally loaded through fixed detachable prosthesis and some are isolated and unloaded. The dog was sacrificed four months later and bone sections with implants were processed for histologic evaluation and the results were as follows ; (1) The bone to implant interface after four months of load bearing presented no mobility and no marginal bone loss radiographically and histologically. (2) The interface zone between compact bone and implant revealed a direct bone to implant contact and in some areas marrow tissue contacts were examined at the light microscopic level. (3) At the ultrastructural level the interface of surrounding compact bone matrix and implant, three types of superficial layers were found ; one with moderate electron dense amorphous granular substance layer, other with high electron dense fine granular substance layer, and another type of amorphous granular substance covered with high electron dense line of minute granules. (4) The osteoblasts in the marrow tissue neighboring implants and osteocytes in compact bone showed typical normal characteristics and in the marrow tissues some of lymphocytes and mast cells were observed. (5) The abscence of abnormal tissue reactions at a cellular level indicates a high degree of biocompatibility for the experimental titanium implant and basically no difference was found between functionally loaded and unloaded implants.

  • PDF

Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube

  • Lee, E.J.;Bajracharya, P.;Jang, E.J.;Chang, J.S.;Lee, H.J.;Hong, S.K.;Choi, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.649-658
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are adult stem cells that activate and differentiate into myotubes. These stem cells are multipotent as they transdifferentiate into adipocyte-like cells, nerve cells and osteocytes. The effects of steroid hormones ($E_2$ and testosterone) were studied as a further step toward understanding the mechanism of MSCs proliferation and differentiation. In this study, MSCs were grown continuously for 87 days, implying that there may be a group of MSCs that continue to proliferate rather than undergoing differentiation. Isolated MSCs were cultured in Dulbecco's Modified Eagle's Medium supplemented with adult male, female or castrated bovine serum to observe the effect of steroid hormones on MSC proliferation. Cell proliferation was the highest in cultures supplemented with male serum followed by female and castrated serum. The positive effect of male hormone on MSC proliferation was confirmed by the observation of testosterone-mediated increased proliferation of cells cultured in medium supplemented with castrated serum. Furthermore, steroid hormone treatment of MSCs increased lipid accumulation in myotubes. Oil-Red-O staining showed that 17${\beta}$-estradiol ($E_2$) treatment avidly increased lipid accumulation, followed by $E_2$+testosterone and testosterone alone. To our knowledge, this is the first report of lipid accumulation in myotubes due to steroids in the absence of an adipogenic environment, and the effect of steroid hormones on cell proliferation using different types of adult bovine serum, a natural hormonal system. In conclusion, we found that sex steroids affect MSCs proliferation and differentiation, and lipid accumulation in myotubes.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • 대한의생명과학회지
    • /
    • 제19권4호
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

개 관절 윤활액 유래 중간엽 줄기세포의 특성과 분화능 분석 (Characterization and Differentiation of Synovial Fluid Derived Mesenchymal Stem Cells from Dog)

  • 이정현;이성림
    • 한국수정란이식학회지
    • /
    • 제27권3호
    • /
    • pp.175-181
    • /
    • 2012
  • The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% $CO_2$ atmosphere at $38.5^{\circ}C$. The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-${\gamma}2$, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.

돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구 (Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs)

  • 이아영;최경임;나진주;소병재;이경우;장기윤;송재영;차상호
    • 대한수의학회지
    • /
    • 제53권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells

  • Jeon, Byeong-Min;Yeon, Gyu-Bum;Goo, Hui-Gwan;Lee, Kyung Eun;Kim, Dae-Sung
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.135-147
    • /
    • 2020
  • Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.