• Title/Summary/Keyword: Osteoclast differentiation

Search Result 240, Processing Time 0.026 seconds

Xylitol Down-Regulates $1{\alpha},25$-Dihydroxy Vitamin D3-induced Osteoclastogenesis via in Part the Inhibition of RANKL Expression in Osteoblasts

  • Ohk, Seung-Ho;Jeong, Hyunjoo;Kim, Jong-Pill;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.127-134
    • /
    • 2013
  • Xylitol is a sugar alcohol with a variety of functions including bactericidal and anticariogenic effects. However, the cellular mechanisms underlying the role of xylitol in bone metabolism are not yet clarified. In our present study, we exploited the physiological role of xylitol on osteoclast differentiation in a co-culture system of osteoblastic and RAW 264.7 cells. Xylitol treatment of these co-cultures reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. A cell viability test revealed no marked cellular damage by up to 100 mM of xylitol. Exposure of osteoblastic cells to xylitol decreased RANKL, but not OPG, mRNA expression in the presence of $10^{-8}M$ $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. Furthermore, bone resorption activity, assessed on bone slices in the coculture system, was found to be dramatically decreased with increasing xylitol concentrations. RANKL and OPG proteins were assayed by ELISA and the soluble RANKL (sRANKL) concentration was decreased with an increased xylitol concentration. In contrast, OPG was unaltered by any xylitol concentration in this assay. These results indicate that xylitol inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis by reducing the sRANKL/OPG expression ratio in osteoblastic cells.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Inhibitory Effect of Osteoclastogenesis and Estradiol Activity of Myelophycus simplex Extract (바위수염 추출물의 파골세포 분화 억제 및 에스트라디올 활성 평가)

  • Ha, Hyun Joo;Lim, Hyung Jin;Kim, Min Gyeong;Bak, Seon Gyeong;Rho, Mun-Chual;Cheong, Sun Hee;Lee, Seung-Jae;Lee, Sang-Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In the present study, the estrogenic activity and anti-osteoclastogenic activity of the Myelophycus simplex extract were evaluated using T47D-Kbluc cells and bone marrow-derived macrophages (BMMs). As a result of the measurement of the estrogenic activity in the T47D-Kbluc cell line, the Myelophycus simplex extract showed increased estrogenic activity in a dose-dependent manner in association with its concentration. To confirm the regulatory effect of the Myelophycus simplex extract on the estrogen-responsive gene, the Myelophycus simplex extract showed a similar tendency to estradiol: the expression of estrogen receptor 1 (ESR1) was significantly decreased while the expression of estrogen receptor 2 (ESR2) was increased. Furthermore, the Myelophycus simplex extract exhibited an inhibitory effect on osteoclast differentiation. In conclusion, these Myelophycus simplex extracts might be regarded as candidates for further studies or the development of functional food products or medicine to prevent or avoid postmenopausal symptoms for women.

Effects of a Mixture of Cynanchi Wilfordii Radix and Humuli Lupuli Flos Extract on Estrogenic Activities and Anti-Osteoclastogenesis (백수오(白首烏)와 비주화(啤酒花) 복합물의 에스트로겐 활성과 파골세포 분화 억제효과)

  • Park, Dongjun;Lee, Hong Gu;Min, Kyoungin;Park, Hyoungkook;Jin, Mu Hyun;Cho, Ho Song
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives : This study aimed to investigate the synergistic effect of combining Cynanchi Wilfordii Radix extract with Humuli Lupuli Flos extract on estrogenic and anti-osteoclastogenic activity. Methods : Estrogenic effect of a mixture of Cynanchi Wilfordii Radix extract and Humuli Lupuli Flos extract (CWHL), Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin (an active ingredient of Cynanchi wilfordii Radix extract) and 8-prenylnaringenin (an active ingredient of Humuli Lupuli Flos extract) were examined by proliferation E-screen assay and expression of estrogen inducible gene, pS2 via Real Time-PCR (RT-PCR) in MCF-7 estrogen responsive cells. And their estrogenic activities were investigated how to modulate Estrogen receptor 𝛽 by binding affinity assay. Inhibitory effect of CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin on RANKL-induced osteoclast differentiation were tested by TRAP (Tartrate-resistant acid phosphatase) staining in osteoclastogenic RAW 264.7 cells. Results : CWHL, Humuli Lupuli Flos extract and 8-prenylnaringenin accelerated the proliferation of MCF-7 and the expression of pS2 in MCF-7. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin bind to estrogen receptor 𝛽. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin inhibited RANKL-induced osteoclastogenesis in osteoclastogenic RAW 264.7. CWHL is more effective for all markers than Cynanchi Wilfordii Radix extract or Humuli Lupuli Flos extract alone. Conclusions : CWHL may a potential therapeutic agent for menopause and osteoporosis as a natural food resource. CWHL as a natural food source has therapeutic potential in cases of menopause and osteoporosis.

EFFECT OF BISPHOSPHONATE ON OSTEOBLAST DIFFERENTIATION (Bisphosphonate가 조골세포 분화에 미치는 영향)

  • Lee, In-Soon;Kim, Hyun-Jung;Ryoo, Hyun-Mo;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.309-317
    • /
    • 2000
  • Bisphosphonates inhibit bone resorption in vivo and in vitro. Currently proposed mechanism of action of bisphosphonates involves both direct effect on osteoclasts and indirect effect through the mediation of osteoblasts. Recent understanding of molecular mechanism of osteoclastogenesis indicates that osteoclast differentiation is quite tightly regulated by signaling molecules from differentiating osteoblasts. Therefore this investigation was designed to elucidate the effect of bisphosphonate on osteoblast differentation. For this purpose, in vitro effects of etidronate and alendronate on the expression of Cbfa1 a master control gene of osteoblast differentiation, several bone marker genes, and formation of calcified nodules were evaluated. To evaluate the effect of bisphosphonate on calcified nodule formation, osteoblasts isolated from rat calvaria were cultured in a-MEM containing $10^{-4},\;10^{-5},\;10^{-6}M$ of etidronate or $10^{-6},\;10^{-7},\;10^{-8}M$ of alendronate for 15 days, and then stained by alizarin red to determine mineralization. To evaluate the effect of bisphosphonate on osteoblast differentiation, osteoblast cells were cultured in a-MEM containing $10^{-4},\;10^{-5},\;10^{-6}M$ of etidronate or $10^{-6}$ M of alendronate for 8 days. And then total RNA was extracted and northern blot analysis was done to examine the expression of Cbfa1, type I collagen, alkaline phosphatase, osteopontin and osteocalcin. The results were as follows: 1. Etidronate suppressed the calcification of bone nodule in dose dependent manner, while alendronate didn't. 2. The expression of Cbfa1 was decreased dose dependently by etidronate, but increased by alendronate. 3. Etidronate suppressed the expression of type I collagen, osteopontin and osteocalcin in dose dependent manner however alendronate promote the expression of osteoblast marker gene. 4. The expression of alkaline phosphatase was not affected either etidronate nor alendronate. These results suggest that etidronate suppressed the expression of Cbfa1 in dose dependent manner, and consequently the expression of osteoblast marker genes, such as type I collagen, osteopontin and osteocalcin were also suppressed in similar manner. And finally this decreased expression of osteoblastic marker gene prevent calcined bone nodule formation.

  • PDF

Altered Expression of RANKL/OPG after Alendronate Administration in the Developing Teeth of Postnatal Rats

  • Kim, Min-Ju;Jun, Yun-Jeong;Yu, Hong-Il;Yang, So-Yeong;Oh, Won-Man;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • The working mechanism of bisphosphonate on bone cells is unclear despite its powerful inhibitory activity on bone resorption. The differentiation and activation of osteoclasts are essential for bone resorption and are controlled by the stimulatory RANKL and inhibitory OPG molecules. Teeth exhibit a range of movement patterns during their eruption to establish their form and function, which inevitably accompanies peripheral bone resorption. Hence, the mandible, which contains the teeth during their eruption processes, is a good model for revealing the inhibitory mechanism of bisphosphonate upon bone resorption. In the present study, RANKL and OPG expression were examined immunohistochemically in the mandible of rats with developing teeth after alendronate administration (2.5 mg/kg). The preeruptive mandibular first molars at postnatal days 3 to 10 showed the developing stages from bell to crown. No morphological changes in tooth formation were observed after alendronate administration. The number of osteoclasts in the alveolar bone around the developing teeth decreased markedly at postnatal days 3, 7 and 10 compared with the control group. RANKL induced strong positive immunohistochemical reactions in the dental follicles and stromal cells around the mandibular first molar. In particular, many osteoclasts with strongly positive reactions to RANKL appeared above the developing mandibular first molars at postnatal days 3 and 10. Immunohistochemical reactions with RANKL after alendronate administration were weaker than the control groups. However, the immunohistochemical reactivity to OPG was stronger after alendronate administration, at postnatal days 3 and 10. These results suggest that alendronate may decrease bone resorption by regulating the RANKL/OPG pathway in the process of osteoclast formation, resulting in a delay in tooth eruption.

A New Paradigm to Mitigate Osteosarcoma by Regulation of MicroRNAs and Suppression of the NF-${\kappa}B$ Signaling Cascade

  • Mongre, Raj Kumar;Sodhi, Simrinder Singh;Ghosh, Mrinmoy;Kim, Jeong Hyun;Kim, Nameun;Sharma, Neelesh;Jeong, Dong Kee
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.197-212
    • /
    • 2014
  • Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-${\kappa}B$ appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and children. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidrug resistance (MDR). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-${\kappa}B$ pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, bio-physiological factors and their target pairs with NF-${\kappa}B$ to ameliorate oncogenesis with the "bridge between miRNAs and NF-${\kappa}B$". The application of NF-${\kappa}B$ inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.

Functional Bioactive Compounds and Biological Activities of Vaccinium oldhamii (정금나무의 기능성 생리활성 물질과 생리활성)

  • Chae, Jung-Woo;Jo, Huiseon
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • In modern society, interest in antioxidants is increasing as the stress caused by oxidants increases. However, the demand for synthetic antioxidants is decreasing because some studies have confirmed that they are harmful when consumed in large quantities; thus, studies on antioxidants derived from natural substances are actively being conducted to replace synthetic antioxidants. Blueberry, known as one of the world's top ten long-lived foods, is a plant of the Vaccinium (Ericaceae) family, and various pharmacological activities of blueberry including antioxidant activity have been studied. Vaccinium oldhamii (VO) is a deciduous broad-leaved shrub in the same genus as blueberries, and in this paper, we summarize the studies on the efficacy analysis of VO extracts and purified products. The content of phenolic compounds in VO fruits was proportional to antioxidant and anti-influenza activity such as the inhibition of NO production, and the total content of polyphenols and anthocyanin was higher than that in blueberries. VO fruit extracts showed anti-inflammatory activity and anti-cancer activity against human acute leukemia; in contrast, VO branch extracts showed anti-inflammatory activity, activity to inhibit osteoclast differentiation and bone resorption due to inflammatory response, and anti-cancer activity against several human cancer cell lines. Compared to blueberries, VO showed higher phenolic compound content, antioxidant activity, and various physiological activities. In addition, VO is considered to have sufficient value as an alternative crop to blueberries, such as it can be grown natively in Korea, with simple mass cultivation and no need to pay royalties for commercialization.

Effect of Hijikia fusiforme Fractions on Proliferation and Differentiation in Osteoblastic MC3T3-E1 Cells (톳 분획물이 조골세포의 증식 및 분화에 미치는 영향)

  • Jeon, Min-Hee;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.300-308
    • /
    • 2011
  • Osteoporosis is a disease involving a decrease in bone mineral density and increased risk of fractures. Osteoblast and osteoclast activities are important for bone formation. The MC3T3-E1 osteoblastic cell line is a well-accepted model of osteogellsis in vitro. Hijikia fusiforme is a kind of edible brown seaweed that grows mainly in the Northwest Pacific region, including the countries of Korea, Japan and China, and it has been widely used as a medicinal and health food in Korea. In this study, by using osteoblasts, the effects of Hijikia fusiforme fractions on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and mineralization of cells were investigated. Hijikia fusiforme were subjected to fractionation by using hexane, methanol, butanol and aqueous. Proliferation of the MC3T3-E1 osteoblastic cells that were treated with Hijikia fusiforme fractions increased by approximately 120%. Regarding effects of Hijikia fusiforme fractions on ALP activity, 1 ${\mu}g$/ml butanol fraction showed the highest activity. The synthesis of collagen increased significantly in response to treatment with Hijikia fusiforme fractions, with the exception of the hexane fraction. Moreover, mineralization in the MC3T3-E1 cells that were treated with 100 ${\mu}g$/ml butanol fraction increased by 281%. Also, when 100 ${\mu}g$/ml aqueous fraction was added, mineralization increased by 240%. These results indicate that Hijikia fusiforme fractions have anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.

Effect of Pine (Pinus densiflora) Needle Extracts on Antioxidant Activity and Proliferation of Osteoclastic RAW 264.7 Cells (적송잎 추출물이 항산화 활성 및 파골세포의 증식에 미치는 영향)

  • Jeon, Min-Hee;Park, Mi-Ra;Park, Yong-Soo;Hwang, Hyun-Jung;Kim, Sung-Gu;Lee, Sang-Hyeon;Kim, Mi-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.525-530
    • /
    • 2011
  • Pine needles have long been used as a traditional health-promoting medicinal food in Korea. This study was carried out to investigate the effects of pine needle extracts on the antioxidant activity, and proliferation of osteoclastic RAW 264.7 cells. Pine needle extracts were examined using hot water, ethanol, hexane, hot water-ethanol, and hot water-hexane. The effects of the pine needle extracts were examined by comparing the results with that of a commercial agents, proanthocyanidin. Analysis of each extract indicated that hot water-ethanol and ethanol extracts contained the highest total polyphenol concentrations. The hot water-ethanol and ethanol extracts also showed relatively the highest SOD-like activity. The proliferation of osteoclastic RAW 264.7 cells treated with pine needle extracts was decreased by lower than 70%. In addition, the hot water and ethanol extracts of pine needle significantly reduced the number of tartrate-resistant acid phosphatase-positive ($TRAP^+$) multinucleated cells from osteoclatic RAW 264.7 cells. These results indicate that pine needle extracts had an anabolic effect on bone through the promotion of osteoclast differentiation, suggesting that they could be used for the treatment of common metabolic bone diseases.