• Title/Summary/Keyword: Osteoblast,

Search Result 716, Processing Time 0.032 seconds

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

The effect of implant surface treated by anodizing on proliferation of the rat osteoblast (양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향)

  • Hur, Yin-Shik;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Kim, Hyung-Sun;Cho, Byung-Won;Cho, Won-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.499-518
    • /
    • 2003
  • The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

A Study of the Effect of Platelet-Rich Plasma on the Cellular Proliferation and Differentiation of Osteoblast Cell Line (혈소판농축혈장이 조골세포주의 세포증식 및 분화에 미치는 영향에 대한 연구)

  • Jung, Tae-Wook;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • The osseointegration in implant therapy is achieved following general wound healing mechanism. Platelet play a major role in wound healing process. In addition to blood clot formation, they secrete many growth factors which regulate the attachment, proliferation and differentiation of nearly all cell types. The use of these growth factors is now known to be very effective methods to improve the cellular activity. Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. Previous study proved that platelet-rich plasma enhanced the cellular attachment by inducing fibronectin, vitronectin from osteoblast. So, this study was aimed to investigate the effect of platelet-rich plasma on the cellular proliferation and differentiation in vitro. The effect on the proliferation was evaluated by MTT assay. To evaluate autocrine and paracrine effect, conditioned medium was made and compared. By measuring alkaline phosphatase activity, the effect on the cellular differentiation was evaluated. The results were as following: The cellular proliferation of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The alkaline phosphatase activity increased depending on the concentration of platelet-rich plasma and conditioned medium. These findings imply that platelet-rich plasma enhance the cellular proliferation and differentiation and maximize the cellular activity by using the autocrine and paracrine effect.

Experimental Studys of GMJST on Bone Growth Factors;Proliferation of Osteoblast and Supression of Osteoclast (가미장신탕(加味長身湯)이 뼈성장 관련 인자에 미치는 영향에 대한 실험적 연구)

  • Han, Deok-Hee;An, Joung-Jo;Jo, Hyun-Kyung;Yoo, Ho-Rhyong;Kim, Yoon-Sik;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.802-809
    • /
    • 2008
  • Gamijangsing-tang (GMJST) has been used for treatment of bone formation in traditional korean medicine. The purpose of this study is to examine effects of GMJST on bone metabolism. The effects on the osteoblasts were determined by measuring (1) cell proliferation, (2) alkaline phosphatase (ALP) activity, (3) osteoprotegerin (OPG) secretion. (4) The morphologic changes of cells were observed by light microscopy and electron microscopy. Mineralization of calcium was determined by quantitative alizarin red-S assay and mineralization of phosphate was observed by von kossa staining. The morphologic changes of mineralization on the cells were observed by transmission electron microscopy (TEM). The effects on the osteoclast were investigated by tartrate-resistant acid phosphatase (TRAP) staining. Following results were obtained: Celluar activity of osteoblastic cells (MG-63) was significantly increased in 10-5 of dilution of GMJST. ALP and OPG activity of osteoblastic cells were increased in GMJST than normal MG-63 cell. Mineralization of osteoblastic cells were increased in GMJST than normal MG-63 cell. The activity of osteoclast cells (RAW 264.7) was significantly decreased in GMJST than normal MG-63 cell. From the results, GMJST stimulated the proliferation and mineralization of bone-forming osteoblast and inhibited by bone- lysis osteoclast.

Cytoprotective Effect of Taurine against Hydrogen Peroxide-Induced Oxidative Stress in UMR-106 Cells through the Wnt/β-Catenin Signaling Pathway

  • Lou, Jing;Han, Donghe;Yu, Huihui;Yu, Guang;Jin, Meihua;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.584-590
    • /
    • 2018
  • Osteoporosis development is closely associated with oxidative stress and reactive oxygen species (ROS). Taurine has potential antioxidant effects, but its role in osteoblasts is not clearly understood. The aim of this study was to determine the protective effects and mechanisms of actions of taurine on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in osteoblast cells. UMR-106 cells were treated with taurine prior to $H_2O_2$ exposure. After treatment, cell viability, apoptosis, intracellular ROS production, malondialdehyde content, and alkaline phosphate (ALP) activity were measured. We also investigated the protein levels of ${\beta}-catenin$, ERK, CHOP and NF-E2-related factor 2 (Nrf2) along with the mRNA levels of Nrf2 downstream antioxidants. The results showed that pretreatment of taurine could reverse the inhibition of cell viability and suppress the induced apoptosis in a dose-dependent manner: taurine significantly reduced $H_2O_2$-induced oxidative damage and expression of CHOP, while it induced protein expression of Nrf2 and ${\beta}-catenin$ and activated ERK phosphorylation. DKK1, a Wnt/${\beta}-catenin$ signaling inhibitor, significantly suppressed the taurine-induced Nrf2 signaling pathway and increased CHOP. Activation of ERK signaling mediated by taurine in the presence of $H_2O_2$ was significantly inhibited by DKK1. These data demonstrated that taurine protects osteoblast cells against oxidative damage via Wnt/${\beta}-catenin$-mediated activation of the ERK signaling pathway.

The Effects of HAp and BCP Nano Powders Synthesized by Microwave-Assisted Synthesis on the Activation of Osteoblast and Osteoclast (마이크로웨이브법에 의해 제조된 HAp 및 BCP 분말이 뼈모세포 및 파골세포의 활성에 미치는 영향)

  • Song, Ho-Yeon;Min, Young-Ki;Yang, Hun-Mo;Mang, Joo-Yang
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.669-675
    • /
    • 2007
  • Hydroxyapatite (HAp) and biphasic calcium phosphate (BCP) nano powders were synthesized using the microwave-assisted synthesis process dependent on pH and microwave irradiation time. The average size of a powder was less than 100 nm in diameter. Through in-vitro cytotoxicity tests by an extract dilution method, the HAp and BCP nano powders have shown to be cytocompatible for L-929 fibroblast cells, osteoblastlike MG-63 cells and osteoclast-like Raw 264.7 cells. The activation of osteoblast was estimated by alkaline phosphatase (ALP) activity. When the HAp and BCP were treated to MG-63 cells, alkaline phosphatase activities increased on day 3, compared with those of the untreated cells. Also, the collagen fibers increased when the HAp and BCP powders suspension were treated to MG-63 cells, compared to those of the untreated cells. Quantitative alizarin red S mineralization assays showed a trend toward increasing mineralization in osteoblast cultured with powder suspension. In conclusion, hydroxyapatite and biphasic calcium phosphate appeared to be a bone graft substitute material with optimal biocompatibility and could be further applied to clinical use as an artificial bone graft substitute.