• Title/Summary/Keyword: Osmotic stretch

Search Result 3, Processing Time 0.021 seconds

Effects of Arachidonic Acid on the Calcium Channel Current $(I_{Ba})$ and on the Osmotic Stretch-induced Increase of $I_{Ba}$ in Guinea-Pig Gastric Myocytes

  • Xu, Wen-Xie;Kim, Sung-Joon;So, In-Suk;Suh, Suk-Hyo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.435-443
    • /
    • 1997
  • We employed the whole-cell patch clamp technique to investigate the effects of arachidonic acid (AA) on barium inward current through the L-type calcium channels ($I_{Ba}$) and on osmotic stretch-induced increase of $I_{Ba}$ in guinea-pig antral gastric myocytes. Under isosmotic condition, AA inhibited $I_{Ba}$ in a dose-dependent manner to $91.1{\pm}1.4,\;72.0{\pm}3.2,\;46.0{\pm}1.8,\;and\;20.3{\pm}2.3%$ at 1, 5, 10, 30 mM, respectively. The inhibitory effect of AA was not affected by 10 ${\mu}M$ indomethacin, a cyclooxygenase inhibitor. Other unsaturated fatty acids, linoleic acid (LA) and oleic acid (OA) were also found to suppress $I_{Ba}$ but stearic acid (SA), a saturated fatty acid, had no inhibitory effect on $I_{Ba}$. The potency sequence of these inhibitory effects was AA ($79.7{\pm}2.3%$) > LA ($43.1{\pm}2.7%$) > OA ($14.2{\pm}1.1%$) at 30 ${\mu}M$. On superfusing the myocyte with hyposmotic solution (214 mOsm) the amplitude of $I_{Ba}$ at 0 mV increased ($38.0{\pm}5.5%$); this increase was completely blocked by pretreatment with 30 mM AA, but not significantly inhibited by lower concentrations of AA (1, 5 and 10 ${\mu}M$) (P>0.05). Unsaturated fatty acids shifted the steady-state inactivation curves of $I_{Ba}$ to the left; the extent of shift caused by AA was greater than that caused by LA. The activation curve was not affected by AA or LA. The results suggest that AA and other unsaturated fatty acids directly modulate L-type calcium channels and AA might modulate the hyposmotic stretch- induced increase of L-type calcium channel current in guinea-pig gastric smooth muscle.

  • PDF

Transient Receptor Potential C4/5 Like Channel Is Involved in Stretch-Induced Spontaneous Uterine Contraction of Pregnant Rat

  • Chung, Seungsoo;Kim, Young-Hwan;Joeng, Ji-Hyun;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.503-508
    • /
    • 2014
  • Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by $1{\mu}M$ lanthanides (a potent TRPC4/5 stimulator) and suppressed by $10{\mu}M$ 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide ($1{\mu}M$) and suppressed by 2-APB ($10{\mu}M$), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.