• Title/Summary/Keyword: Oscillation Phenomenon

Search Result 125, Processing Time 0.035 seconds

The Prediction of Self-Excited Oscillation of a Fuzzy Control System Based on the Describing Function - Static Case (묘사함수를 이용한 퍼지 제어 시스템의 자기진동 현상의 예측 - 정적 경우)

  • 김은태;노흥식;김동연;박민용
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.90-96
    • /
    • 1998
  • The self-excited oscillation is the phenomenon which can be observed in the systems composed of nonlinear elements. The phenomenon is of fundamental importance in nonlinear systems and, as far as the design of a nonlinear system is concerned, it should be considered along with the stability analysis. In this paper, the oscillation of a system controlled by a static nonlinear fuzzy controller is theoretically addressed. First, the describing functionof a static fuzzy controller is derived and then, based on the derived describing function, self-excited oscillation of the system controlled by a static fuzzy controller is predicted. To obtain the describing function of the static fuzzy controller, a simple struture is assumed for the fuzzy controller. Finally, computer simulation is included to show an example where the describing function given in the paper is used to predict the self-excited oscillation of a fuzzy-control system.

  • PDF

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

Unstable Operation of Francis Pump-Turbine at Runaway: Rigid and Elastic Water Column Oscillation Modes

  • Nicolet, Christophe;Alligne, Sebastien;Kawkabani, Basile;Simond, Jean-Jacques;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-333
    • /
    • 2009
  • This paper presents a numerical simulation study of the transient behavior of a $2{\times}340MW$ pump-turbine power plant, where the results show an unstable behavior at runaway. First, the modeling of hydraulic components based on equivalent schemes is presented. Then, the 2 pump-turbine test case is presented. The transient behavior of the power plant is simulated for a case of emergency shutdown with servomotor failure on Unit 1. Unstable operation at runaway with a period of 15 seconds is properly simulated using a 1-dimensional approach. The simulation results points out a switch after 200 seconds of the unstable behavior between a period of oscillations initially of 15 seconds to a period of oscillation of 2.16 seconds corresponding to the hydraulic circuit first natural period. The pressure fluctuations related to both the rigid and elastic water column mode are presented for oscillation mode characterization. This phenomenon is described as a switch between a rigid and an elastic water column oscillation mode. The influence of the rotating inertia on the switch phenomenon is investigated through a parametric study.

Statistical Characteristics of Southern Oscillation and its Barometric Pressure Data

  • Kawamura, Akira;Jinno, Kenji;Eguchi, Soichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1195-1204
    • /
    • 2002
  • The impacts of El Nino Southern Oscillation (ENSO) phenomenon on climate are widespread and extend far beyond the tropical Pacific. The phenomenon can be characterized by Southern Oscillation Index (SOI) which is derived from values of the monthly mean sea level pressure barometric difference between Tahiti and Darwin, Australia. Its best-known extreme is the El Nino event. In this study, general statistical characteristics of SOI and the data from which it is derived (i.e. mean sea level pressure data at Tahiti and Darwin) are presented as guidance when using SOI far other analyses. The characteristics include the availability of the barometric pressure data, statistics of monthly pressure data, correlation of SO intensity, frequency analysis of SOI by magnitude and by month (January-December), duration properties of SOI by run analysis.

  • PDF

A MOSFET Pushpull Circuit which Prevents the Output Circuit from Oscillation Causing Reverse Recovery Current of MOSFET and Parastic Components (역회복전류와 기생소자들에 의한 발진 방지용 MOSFET 푸쉬풀 회로)

  • Jeong, Jae-Hoon;Cho, Gyu-Hyeong;Ahn, Che-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1292-1294
    • /
    • 1996
  • The general output circuit for PWM output is pushpull using a complimentary MOSFET. The gate driver coupled directly at gate can switch easy upto a high frequency. However, a high reverse recovery current and parastic components make a oscillation output. This paper analyses this phenomenon and proposes a novel output circuit preventing the oscillation.

  • PDF

Characteristics of Thermoacoustic Oscillation in Ducted Flame Burner (관형 연소기의 열음향학적 특성에 관한 연구)

  • 조상연;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.621-626
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat additions is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. In addition, the effect of wall temperature is presented. The results suggest that the frequency of max. oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters. On the other hand, the wall temperature distribution has much strong effects on the oscillation, even creates different mode of acoustic resonance.

  • PDF

GIBBS PHENOMENON AND CERTAIN NONHARMONIC FOURIER SERIES

  • Rhee, Jung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2011
  • The Fourier series has a rapid oscillation near end points at jump discontinuity which is called the Gibbs phenomenon. There is an overshoot (or undershoot) of approximately 9% at jump discontinuity. In this paper, we prove that a bunch of series representations (certain nonharmonic Fourier series) give good approximations vanishing Gibbs phenomenon. Also we have an application for approximating some shape of upper part of a vehicle in a different way from the method of cubic splines and wavelets.

Characteristics of thermoacoustic oscillation in ducted flame burner (관형 연소기의 열 음향학적 특성에 관한 실험적 연구)

  • 조상연;이수갑
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

Eaperimental Study on the Control of Harbor Oscillation due to Water Wave (파랑에 의한 항내진동의 제어에 관한 실험적 연구)

  • Choi, han kuy;Lee, Seon Yong
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.101-107
    • /
    • 1994
  • This study is to investigate harbor oscillation phenomenon according to combination of the wall structures by model experiment in a three dimensional wave basin. Six different types of wall combination were chosen through combination of erect wall, erect dissipation block, and sand beach, wave height at selected points in the harbor were measured by electronic wave gage. Test results show that the wall structure composed solely of erect walls showed generally highest harbor oscillation. Since natural beach shows lower reflection than erect dissipation block do, we thought it would be more efficient to use natural beach for improved harbor oscillation. The result showed, however, that the erect dissipation block are more efficient than natural beach to attain less harbor oscillation. The reason seens that the erect dissipation blocks have better capability to control breaking wave on the surface of the structure.

  • PDF

Observation of flame oscillation with changing combustor pressure (연소실 압력변동에 따른 화염 진동현상의 관찰)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-280
    • /
    • 2005
  • At previous study, nitrogen oxide emission was decreased with decreasing pressure index. This tendency was explained by the flame oscillation with changing combustor pressure. In this study, the characteristics of flame oscillation with changing combustor pressure were investigated. It can be found that flame length is extended and flame width is narrowed by decreasing combustor pressure. It can be observed that pilot flame and the surrounding air converge on the inner flame in the $P^{\ast}{\geqq}1$ conditions and that surrounding air and flow pattern was widely dispersed in the $P^{\ast}<1$ conditions. In the respect of average flame length, low fluctuation was shown in the $P^{\ast}<1$ conditions. On the other hands, large fluctuation was shown in the $P^{\ast}<1$ conditions. Flame oscillation are observed from $P^{\ast}=$ 0.98 in the condition of $P^{\ast}<1$ and the amplitude of flame oscillation becomes larger when $P^{\ast}$ is lowered. These results demonstrate that low NOx phenomenon was caused by flame oscillation with changing combustor pressure.

  • PDF