• Title/Summary/Keyword: Oscillation Control

Search Result 499, Processing Time 0.032 seconds

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

Oscillation Motion Control of Gantry Crane System with Arm for Anti-Sway (Anti-sway용 암을 가진 겐트리 크레인의 흔들림저감 제어)

  • Kim, H.S.;Park, H.S.;Lee, D.H.;Park, J.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • In practical fields, the sway of crane systems leads to extra stress to the crane structure during the transporting operation and it is in close connection with its life. Usually, when we operate the cranes with high speed and manual control, the sway motion is irreducible. In this paper, a new type of crane system is proposed to avoid the irreducible sway of the crane systems. The proposed system is composed of mechanical arm with function of anti-sway based on conventional line system. By the anti-sway arm, we can realize to prevent the sway of the container box but cannot avoid the oscillation for the overall body of the crane. So, a controller design method to solve the above stated problem must be considered. The problem is solved by adopting the velocity pattern control methods of trapezoidal and curve types and its effectiveness is proved through experimental results.

  • PDF

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Position control of robot's rotational axis having parallel link mechanism (평형링크 메카니즘이 있는 관절형 로보트 회전축의 위치제어)

  • 여인택;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.341-345
    • /
    • 1986
  • In the course of robot control system building, there are problems in the position control loop of 3rd axis of robot manipulator. The problems are summerized as two: one is uncontrollability of position and the other is oscillation. And these problems are analyzed through experiment, and it is known that the cause of problems in torsional vibration of 3rd axis. So that these two problems are solved by noise immunity enhancement and lowering of PI controller gain.

  • PDF

Oscillation Mode and Grating Phase in DFB Laser Diode with an Anti-reflection Coated Mirror (무반사 코팅된 DFB 레이저 다이오드에서 발진 모드와 격자 위상)

  • Kwon, Keeyoung;Ki, Janggeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.483-488
    • /
    • 2022
  • In this paper, when a gain grating and a refractive index grating exist simultaneously in a DFB laser diode having a wavelength of 1.55 ㎛, an anti-reflection coating is applied to the right mirror surface so that ρr=0. In case of δL<0, the characteristics of the oscillation frequency and oscillation gain have been analyzed. Whenever the phase of the grating on the left side of the mirror continuously decreases by π/2, the δL value of each oscillation mode decreases by about 0.6 to the left of the graph lines of each oscillation mode. The case of the oscillation mode having the lowest threshold gain is the case of κL=10, and in this case, the mode selectivity is relatively low compared to the case of other values of κL. From κL=0.1 to κL=6, the mode selectivity and the frequency stability are excellent. As the mode selectivity is excellent, the frequency stability is excellent. Compared to the case with two cleaved mirrors, the DFB laser diode with anti-reflection coating increases the threshold gain of the oscillation mode by about 2 times, but the mode selectivity becomes about 2 times better.

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

Optimization of Input Parameters by Using DOE for Dynamic Analysis of Bio-inspired Robotic Fish 'Ichthus' (생체모방형 물고기 로봇 '익투스'의 동적 해석을 위한 DOE를 이용한 입력파라미터 최적화)

  • Chung, Chang-Hyun;Lee, Sang-Hyo;Kim, Kyoung-Sik;Cha, You-Sung;Ryuh, Young-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.799-803
    • /
    • 2010
  • Recently, there is a rising interest on studying bio-inspired robotic fish because of real fish's great maneuverability and high energy efficiency. However, the researches about the robotic fish have not been done so much and there are still lots of problems to use them in the real environment such as in the river. This paper describes a bio-inspired robotic fish 'Ichthus' which is developed in KITECH and has 3 DOF propulsive mechanism. We develop the dynamic motion equation of 'Ichthus' in the underwater environment and analyze response characteristics of 'Ichthus' according to the input parameters of tail fin's amplitude and oscillation frequency. Then we propose control parameters at the various velocities. These parameters are useful to increase energy efficiency and it can be used when the fish robot moves in the real environment, for example, we can propose proper amplitude and oscillation frequency when the fish robot passes through the narrow space between obstacles.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF