• Title/Summary/Keyword: Orthogonal frequency-division multiplexing

Search Result 848, Processing Time 0.019 seconds

Interpolation-based Precoding Approximation Algorithm for Low Complexity in Multiuser MIMO-OFDM Systems (다중 사용자 MIMO-OFDM 시스템에서 계산양 감소를 위한 선형 보간법 기반 프리코딩 근사화 기법)

  • Lim, Dong-Ho;Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1027-1037
    • /
    • 2010
  • In this paper, we propose the linear interpolation-based BD (Block Diagonalization) precoding approximation algorithm for low complexity in downlink multiuser MIMO-OFDM (Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing) systems. In the case of applying the general BD precoding algorithm to multiuser MIMO-OFDM systems, the computational complexity increases in proportional to the number of subcarriers. The proposed interpolation-based BD precoding approximation algorithm can be achieved similar SER performance with general BD algorithm and can decrease the computational complexity. It is proved that proposed algorithm can achieve the significantly decreased computational complexity by computer simulation.

PAPR reduction and Pre-distortion techniques against Non-linear Distortion of Satellite WiBro

  • Shrestha, Robin;Seo, Myung-Hwan;Go, Gyeong-Wan;Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.18-25
    • /
    • 2008
  • A major drawback of Orthogonal Frequency Division Multiplexing (OFDM) system is high peak-to-average power ratio (PAPR) of the transmitted signal which introduces inevitable non-linear distortion in the transmission due to the amplifier non-linear property. This causes both in-band distortion and out of band spectrum re-growth. A polynomial based pre-distortion is estimated using the non-linear and inverse non-linear polynomial achieved through the Least Square Error (LSE) method. A new technique of PAPR reduction called 'Phase Realignment' (PR) is proposed which has a optimal effect in improving the BER performance as well as considerable reduction in the PAPR. In this paper we used the PR method along with the 'Peak Clipping' (PC) method is used before the pre-distortion to remove the high peak present in the non constant amplitude of the OFDM signal responsible to drive the amplifier in near saturation region for better performance of the system.

  • PDF

Evaluation on PAPR Performance of Eureka 147 DAB System with Companding Technique (Companding 기법을 적용한 Eureka 147 DAB 시스템의 PAPR성능평가)

  • 정영호;박소라;이수인;김환우
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.229-234
    • /
    • 2002
  • OFDM(Orthogonal Frequency Division Multiplexing) 전송방식은 SCM(Single Carrier Modulation)에 비해 우수한 여러 가지 장점들을 가지며, 방송시스템들 중 Eureka 147 DAB(Digital Audio Broadcasting) 시스템에 가장 먼저 채택되었다. 그러나 OFDM 신호의 높은 PAPR(Peak-to-Average Power Ratio) 특성은 D/A, A/D 변환기의 복잡도를 높이고, 고출력 증폭기의 효율성을 감소시키는 원인이 된다. 이를 개선하기 위한 방법 중에, SDT(Signal Distortion Technique)는 전송시스템의 규격 및 수신기의 변경 없이도 적용 가능하다는 장점을 갖는다. 본 논문에서는 SDT에 속하는 companding 기법을 Eureka 147 DAB 시스템에 적용하여 PAPR 개선정도에 따른 시스템의 요구 $E_2/N_0$ 및 out-of-band의 PSD 열화 정도를 분석하였으며, 이를 clipping 기법의 성능과 비교하였다. 모의실험 결과, $\mu$값이 2인 경우, companding 기법이 PAPR, $E_2/N_0$, out-of-band의 PSD 특성 모두에서 clipping 기법에 비해 우수한 성능을 나타냈다. 또한 $\mu$ 값을 고정시킨 경우, 정규화 값이 증가할수록 신호왜곡 정도가 줄어들어 $E_2/N_0$, out-of-band의 PSD 성능개선 정도는 증가하지만, 이와는 반대로 PAPR 값은 개선 정도가 줄어들었다.

  • PDF

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Robust Decision Feedback Equalizer for OFDM System under Severe ISI Channel

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1914-1925
    • /
    • 2014
  • Inter-symbol interference (ISI) problem is inevitable when the guard interval (GI) is shorter than the delay spread (DS) for an orthogonal frequency division multiplexing (OFDM) system. Iterative techniques have been proposed to overcome such a problem. However, most of existing algorithms are not efficient for an OFDM system with a small GI working under the channel with a large DS. Especially in the case of the DS spans a longer time than the half of the OFDM symbol duration. On the other hand, conventional algorithms, which can reduce the effects of the severe ISI, often employ several impractical assumptions to support the conclusions. In this paper, we present a robust decision feedback equalizer (DFE) for the OFDM system to overcome the severe ISI problem. The proposed DFE removes the ISI in a same manner as the residual inter-symbol interference cancellation (RISIC) algorithm. However, the inter-carrier interference (ICI) is reduced via cyclicity removal instead of the cyclicity restoration used in the conventional algorithms. The link-level simulation (LLS) results indicate that our proposed DFE scheme can dramatically improve the BER performance when the DS spans longer than the half of ODFM symbol duration.

A Modified Pilot Symbol based Channel Estimation Technique Using Cross-Correlation for OFDM Systems (OFDM 시스템에서 상호상관을 이용한 파일럿 심볼 기반 채널 추정 성능 향상 기법)

  • Wee, Jung-Wook;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.467-474
    • /
    • 2011
  • The performance of pilot-symbol-assisted channel estimation widely used for OFDM systems is degraded due to the small number of pilot symbols used for higher transmission efficiency. In this paper, we propose a pilot symbol based channel estimation using cross-correlation to improve the estimation performance of the OFDM system with small number of pilot symbols. The proposed technique detects a data symbol using the channel estimated by the pilot symbol and estimates the channel using the estimated data symbol and the pilot symbol. It is shown by computer simulations that the proposed technique outperforms the conventional pilot symbol assisted estimation technique.

Channel Estimation for OFDM-based Cellular Systems Using a DEM Algorithm (OFDM 기반 셀룰라 시스템에서 DEM 알고리듬을 이용한 채널추정 기법)

  • Lee, Kyu-In;Woo, Kyung-Soo;Yi, Joo-Hyun;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.635-643
    • /
    • 2007
  • In this paper, a decision-directed expectation maximization (DEM) algorithm is proposed to improve the performance of channel estimation in OFDM-based cellular systems. The DEM algorithm enables a mobile station (MS) with multiple antennas, located at the cell boundary, to increase the performance of channel estimation using transmit data, without decreasing spectral efficiency. Also, DEM algorithm can apply fast fading without loss of channel estimation performance because that includes channel variation factor in a group. It is verified by computer simulation that the DEM algorithm can reduce computational complexity significantly while improving the performance of channel estimation in fast fading channels, compared with the expectation maximization (EM) algorithm.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

Improvements of the OFDM System Performance By Using the Characteristic of Circularly Polarized Waves and Carrier Interferometry Signals (원형편파특성과 반송파 간섭신호특성을 적용한 OFDM 시스템 성능 개선)

  • Ahn, Je-Sung;Ha, Deock-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.794-801
    • /
    • 2007
  • In this paper, in order to enhance the performance improvements of both BER and PAPR characteristic for the conventional OFDM system, both circularly polarized waves and carrier interferometry signals which shows the robustic fading reduction effect are applied to the system, and then the performance of the proposed system has been evaluated by computer simulation. From the analysis, it can be seen that the system BER performance can be improved by 2 or 3 dB. Furthermore, it can be also seen that the PAPR characteristic can be markedly reduced.

Channel Estimation Using Virtual Pilot Signal for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 가상 기준 신호를 이용한 채널 추정 기법)

  • Seo, Heejin;Park, Sunho;Kim, Jinhong;Shim, Byonghyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • In this paper, we proposed a soft decision-directed channel estimation based on MMSE estimation for MIMO-OFDM system. While the conventional method employs only pilot signals for channel estimation, the proposed algorithm performs channel estimation using pilot and reliable data signals. We also proposed selection criterion among reliable data signal for channel estimation. From numerical simulations, we show that the proposed channel estimator achieves 1 dB performance gain over conventional channel estimators.