• Title/Summary/Keyword: Orthogonal frequency-division multiplexing

Search Result 848, Processing Time 0.021 seconds

Performance of MIMO-OFDM Systems using The Relay With Multi-Antennas for Cooperative Diversity (Put English Title Here) (다중 안테나의 relay를 가진 MIMO-OFDM시스템의 Cooperative diversity에 따른 성능)

  • Kim, Chan-Kyu;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, the new cooperative communication techniques is proposed for multi-input multi-output(MIMO)-orthogonal frequency division multiplexing (OFDM) system using the relay with multiple antenna. As the MIMO channel is formed by space time coding at the MS(mobile station)-RS(relay station) and RS-BS(base station), we can get the cooperative diversity and MIMO diversity gain simultaneously. Therefore, the performance of MIMO-OFDM system using the relay with multiple-antennas is very improved. And the simple power allocation technique is Proposed for the transmitting power of the mobile station and the relay.

New low-complexity segmentation scheme for the partial transmit sequence technique for reducing the high PAPR value in OFDM systems

  • Jawhar, Yasir Amer;Ramli, Khairun Nidzam;Taher, Montadar Abas;Shah, Nor Shahida Mohd;Audah, Lukman;Ahmed, Mustafa Sami;Abbas, Thamer
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.699-713
    • /
    • 2018
  • Orthogonal frequency division multiplexing (OFDM) has been the overwhelmingly prevalent choice for high-data-rate systems due to its superior advantages compared with other modulation techniques. In contrast, a high peak-to-average-power ratio (PAPR) is considered the fundamental obstacle in OFDM systems since it drives the system to suffer from in-band distortion and out-of-band radiation. The partial transmit sequence (PTS) technique is viewed as one of several strategies that have been suggested to diminish the high PAPR trend. The PTS relies upon dividing an input data sequence into a number of subblocks. Hence, three common types of the subblock segmentation methods have been adopted - interleaving (IL-PTS), adjacent (Ad-PTS), and pseudorandom (PR-PTS). In this study, a new type of subblock division scheme is proposed to improve the PAPR reduction capacity with a low computational complexity. The results indicate that the proposed scheme can enhance the PAPR reduction performance better than the IL-PTS and Ad-PTS schemes. Additionally, the computational complexity of the proposed scheme is lower than that of the PR-PTS and Ad-PTS schemes.

MIMO-OFDM Receiver Algorithm with the Capability of Inter-cell or Inter-sector Interference Cancellation (인접 셀 혹은 인접 섹터 간섭제거 능력을 갖는 MIMO-OFDM 수신 알고리즘)

  • Ko, Kyun-Byoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, the author presents the MIMO(Multi-Input Multi-Output) receiver algorithm with the capability of inter-cell or inter-sector interference cancellation over multi-antenna OFDM(Orthogonal Frequency Division Multiplexing) systems. As contrast with the previous research dealing with the filtering scheme at the time domain, the proposed algorithm is presented as the pre-filtering scheme which can be applicable to the frequency domain. Note that the proposed one can be implemented only by pilot symbols which are used in the channel estimation. In addition, it is analytically confirmed that the proposed scheme can be applied for either MIMO( C-SM(Collaborative-Spatial Multiplexing)) interference or SIMO(Single-Input Multi-Out) interference. The proposed receiver algorithm is verified by simulations over UL-PUSC SR off in IEEE 802.16e standard. From simulation results, it is confirmed that the proposed one can be applicable regardless of the kind of interference. Furthermore, it is verified that the performance is guaranteed even under Ole severe effect of interference and the improvement of system throughput is guaranteed.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency

  • Ahn, Jongmin;Lee, Hojun;Kim, Yongcheol;Chung, Jeahak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.258-269
    • /
    • 2020
  • This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The proposed detection method utilizes multilayer wavelet packet decomposition for detecting impulsive and irregularly concentrated and SSN energy in specific frequency bands of SSN, and the proposed reconstruction scheme uses iterative decision directed-subcarrier reconstruction to recover corrupted OFDM signals using multiple carrier characteristics. Computer simulations were executed to show receiver operating characteristics curve for the detection performance and BER for the reconstruction. The practical ocean experiment of SAVEX 15 demonstrated that the proposed method exhibits a better detection performance compared with conventional detection method and improves BER by 250% and 1230% for uncoded and coded data, respectively, compared with the conventional reconstruction scheme.

Statistical Multiplexing Based RFH-OfDMA System for Improving Downlink User Capacity (하향링크 사용자 용량 개선을 위한 통계적 다중화기반의 RFH-OFDMA)

  • Jung, Bang-Chul;Lee, Hyung-Jin;Sung, Dan-Ken
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.578-586
    • /
    • 2005
  • We propose a random frequency hopping orthogonal frequency division multiple access (RFH-OFDMA) system based on statistical multiplexing for improving downlink user capacity. User capacity is defined as the maximum number of users served with a given basic data-rate in a cell. We compare the downlink user capacity of the proposed RFH-OFDMA system with that of the conventional frequency hopping OFDMA (FH-OFDMA) systems in the worst case where all users are located at the cell boundary. User capacity is limited by either the number of subcarriers or other-cell interference (OCI). Simulation results show that the proposed RFH-OFDMA system can accommodate 262 users in a 3-sectored cell, while the conventional FH-OFDMA systems can accommodate 51 users, when the user channel activity and the required Eb/I0 are 0.1 and 6 dB, respectively, and all users are assumed to be located at the cell boundary.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Design of Unequal Error Protection for MIMO-OFDM Systems with Hierarchical Signal Constellations

  • Noh, Yu-Jin;Lee, Heun-Chul;Lee, Won-Jun;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • In multimedia communication systems, efficient transmission system design should incorporate the use of matching unequal error protection (UEP), since source coders exhibit unequal bit error sensitivity. In this paper, we present UEP schemes which exploit differences in bit error protection levels in orthogonal frequency division multiplexing (OFDM) systems over frequency selective fading channels. We introduce an UEP scheme which improves the link performance with multiple transmit and receive antennas. Especially, we propose a new receiver structure based on two stage Maximum Likelihood detection (MLD) schemes which can approach the performance of a full search MLD receiver with much reduced computational complexity. In the performance analysis, we derive a generalized pairwise error probability expression for the proposed UEP schemes. Simulation results show that the proposed schemes achieve a significant performance gain over the conventional equal error protection (EEP) scheme.

Elimination of Residual Phase Rotation Errors in SC-FDE Received Signals (SC-FDE 수신 신호의 잔여 위상회전에러 제거)

  • Kim, Ji-Heon;Kim, Whan-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.101-102
    • /
    • 2006
  • Similar to Orthogonal Frequency Division Multiplexing (OFDM), a Single Carrier with Frequency Domain Equalization (SC-FDE) system is computationally efficient since equalization is performed on a block of data in the frequency domain. In coherent QAM schemes, the mean phase rotation error caused by the residual carrier frequency offset may lead to serious degradation. When the frequency equalizer is combined with the mean phase error tracking algorithm, its performance can be enhanced noticeably.

  • PDF

위성 WiBro 신호전송 및 보상기법

  • Lee, Byeong-Seop
    • TTA Journal
    • /
    • s.109
    • /
    • pp.56-63
    • /
    • 2007
  • 위성을 이용하여 초고속 이동체를 대상으로 한 WiBro 서비스를 제공하는데 있어서 OFDM(Orthogonal Frequency Division Multiplexing) 신호의 특징인 과대한PAR(Peak To Average Power Ratio)로 인한 위성중계기에서의 비선형 간섭신호 분석과 이를 극복할 수 있는 변조방식에 대하여 논하고 아울러 시속 300Km가 넘는 초고속 이동체에서 OFDM 신호를 송, 수신하는 경우 Doppler 주파수 편이에 따른 WiBro 수신성능 열화를 분석하고 이를 효과적으로 극복할 수 있는 새로운 방법을 제안한다.

  • PDF