• Title/Summary/Keyword: Orthogonal beam

Search Result 129, Processing Time 0.03 seconds

Performance of MIMO-OFDMA system combining power controlling algorithm with multi-beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2022
  • In this paper, we propose the new technique adopting power control to MIMO(multi-input multi-output)-OFDMA(orthogonal frequency division multiplexing Access) system with multi-beamformer. The proposed power controlling algorithm for MIMO-OFDMA allocates the transmitting power of each subcarrier based on the CSI(channel state information) and the interference signal. CSI is feedback from base station to mobile station to decide the transmitting power of each subcarrier. Through the proposed technique, we can control iteratively the transmitting power and update the weight of beamformer simultaneously. Therefore, the SNIR of each subcarrier become to converge the target SNIR and the beam is formed toward the desired direction. And the performance of MIMO-OFDMA system with the proposed approach is very improved. The improvement in bit error rate is investigated through computer simulation of a MIMO-OFDMA system with the proposed approach.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

OFDM Transmission Method Based on the Beam-Space MIMO System (빔공간 MIMO 시스템에 기반한 OFDM 전송방법)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • Beamspace Multiple-Input Multiple Output(MIMO) system can transmit multiple data by using Electronically Steerable Parasitic Array Radiator(ESPAR) antenna which has single Radio Frequency(RF)-chain. Beamspace MIMO system can reduce complexity of the system and size of antenna in comparison with the conventional MIMO system because of characteristic of ESPAR antenna using the single antenna and the RF-chain. Heretofore, only the research of transmitting single-carrier has been conducted by the use of beamspace MIMO system. Therefore, in this paper, we propose beamspace MIMO system based on Orthogonal Frequency Division Multiplexing(OFDM) for transmitting the multi-carrier and analysis the performance of this system. We find a proper reactance value which has good performance because proposed system changes the performance by the reactance values of parasitic elements. and we confirm that performance of the proposed system is similar to conventional MIMO system based on OFDM.

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

Methodologic Aspect of LINAC-based Stereotactic Radiosurgery (선형가속기 기반 뇌정위 방사선 수술기법)

  • Choi, Tae Jin
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.127-137
    • /
    • 2012
  • A conversing beam is firstly designed for radiosurgery by a neurosugern Lars Leksell in 1949 with orthogonal x-rays tube moving through horizontal moving arc to focusing the beam at target center. After 2 decades he composits 201 source of the Co-60 for gamma knife which beams focused at locus. Sveral linac-based stereotactic radiosurgery using the circular collimated beam which size range for 0.4~4.0 cm in a diameter by non-coplanar multiarc have been developed over the decades. The irregular lesions can be treated by superimposing with several spherical shots of radiation over the tumour volume. Linac based techniques include the use of between 4 and 11 non-co-planar arcs and a dynamic rotation technique and use photon beam energies in the range of 6~10 MV. Reviews of the characteristics of several treatment techniques can be found in the literature (Podgorsak 1989, Schell 1991). More in recent, static conformal beams defined by custom shaped collimators or a mini- or micro-multileaf collimator (mMLC) have been used in SRS. Finally, in the last few years, intensity-modulated mMLC SRS has also been introduced. Today, many commercial and in-house SRS programs have also introduced non-invasive immobilization systems include the cyberknife and tomotherapy and proton beam. This document will be compared the characteristics of dose distribution of radiosurgery as introduced gamma knife, BrainLab include photon knife in-house SRS program and cyberknife in currently wide used for a cranial SRS.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Analysis of inter-fraction and intra-fraction errors during volumetric modulated arc therapy in Pancreas Ca (호흡 동조 췌장 암 용적 세기조절 회전 치료 시 Inter-fraction Intra-fraction 분석)

  • Jo, Young Pil;Seo, Dong Rin;Hong, Taek Kyun;Kang, Tae Yeong;Beck, Geum Mun;Hong, Dong Ki;Yun, In Ha;Kim, Jin San
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 2014
  • Purpose : To assess target motion during radiotherapy by quantifying daily setup errors and inter-fractional and intra-fractional movements of pancreatic fiducials. Materials and Methods : Eleven patients were treated via stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy. Bony setup errors were calculated using cone beam computed tomography (CBCT). Inter-fractional and intrafractional fiducial (seed) motion was determined via cone beam computed tomography (CBCT) projections and orthogonal fluoroscopy. Results : Using an off-line correction protocol, setup errors were 0.0 (-1.7-4.0), 0.3 (-0.5-3.0), and 0.0 (-4.1-6.6) mm for the left-right, anterior-posterior, and superior-inferior directions respectively. Random inter-fractional setup errors in the mean fiducial positions were -0.1, -1.1, and -2.3 mm respectively. Intra-fractional fiducial margins were 9.9, 7.8, and 12.5 mm, respectively. Conclusion : Online inter-fractional and intra-fractional corrections based on daily kV images and CBCT expedites SBRT of pancreatic cancer. Importantly, inter-fractional and intra-fractional motion needs to be measured regularly during treatment of pancreatic cancer to account for variations in patient respiration.

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF