• Title/Summary/Keyword: Orthogonal Mechanism

Search Result 84, Processing Time 0.029 seconds

Unsupervised Incremental Learning of Associative Cubes with Orthogonal Kernels

  • Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.

A Study on Tolerance Design of Mechanisms using the Taguchi Method (다구찌 기법을 이용한 기구의 공차설게에 관한 연구)

  • 박경호;한형석;박태원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.813-818
    • /
    • 1996
  • This paper presents a method for tolerance design using the Taguchi Method(TM) and general purpose mechanism analysis program. Also the tolerance design method is with respect to performance improvement of a mechanism. To use the orthogonal array, mathematical model of a mechanism is established and experiments are carried out by the general purpose mechanism analysis program. The contact model is used to consider a clearance effect. This method is applied to the tolerance design of the VTR Deck mechanism. This method can be used in tolerance design of general mechanisms.

  • PDF

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

Oscillating Boundary Layer Flow and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서의 경계층 진동 변화와 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.720-727
    • /
    • 2019
  • Resonating thermal lags of solid fuel with heat transfer oscillations generated by boundary layer oscillation is the primary mechanism of the occurrence of the LFI (Low Frequency Combustion Instability) in hybrid rocket combustion. This study was experimentally attempted to confirm that how the boundary layer was perturbed and led to the LFI. Special attention was also made on oxidizer swirl injection to investigate the contribution to combustion stabilization. Also the overall behavior of fluctuating boundary layer flow and the occurrence of the LFI was monitored as swirl intensity increased. Fluctuating boundary layer was successfully monitored by the captured image and POD (Proper Orthogonal Decomposition) analysis. In the results, oscillating boundary layer became stabilized as the swirl intensity increases. And the coupling strength between high frequency p', q' diminished and periodical amplification of RI (Rayleigh Index) with similar frequency band of thermal lag was also decreased. Thus, results confirmed that oscillating axial boundary layer triggered by periodic coupling of high frequency p', q' is the primary mechanism to excite thermal resonance with thermal lag characteristics of solid fuel.

A Study on the Bburr Formation Mechanism in Clay Machining (Clay가공에 있어서 Burr 생성기구에 관한 연구)

  • Yang, Gyun-Ui;Go, Seong-Rim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.73-84
    • /
    • 1990
  • A burr has been defined as an undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is Unavoidable in all kinds of machining operation. This paper describe the burr formation mechanism which is based on the behavior of workpiece material during orthogonal machining of the clay on the milling machine. Specially in this report the rollover burr is dealt as a specific case of the chip formation in the final stage of cutting. The negative shear angle is introduced as an important features of burr formation. It is found that the burr formation process is divided into three stage-initiation, development of negative shearing, and formation of the burr with appropriate assumptions. Using above the burr formation mechanism, the size of burr can be estimated by cutting conditions.

  • PDF

Orthogonal Stimulus-Response as a Tool to Formulate Traditional Chinese Medicinal Herbal Combination - New Scientific-Based TCM Herbal Formulating Method -

  • Loh, Yean Chun;Tan, Chu Shan;Yam, Mun Fei;Oo, Chuan Wei;Omar, Wan Maznah Wan
    • Journal of Pharmacopuncture
    • /
    • v.21 no.3
    • /
    • pp.203-206
    • /
    • 2018
  • Objectives: There is an increasing number of complex diseases that are progressively more difficult to be controlled using the conventional "single compound, single target" approach as demonstrated in our current modern drug development. TCM might be the new cornerstone of treatment alternative when the current treatment option is no longer as effective or that we have exhausted it as an option. Orthogonal stimulus-response compatibility group study is one of the most frequently employed formulas to produce optimal herbal combination for treatment of multi-syndromic diseases. This approach could solve the relatively low efficacy single drug therapy usage and chronic adverse effects caused by long terms administration of drugs that has been reported in the field of pharmacology and medicine Methods: The present review was based on the Science Direct database search for those related to the TCM and the development of antihypertensive TCM herbal combination using orthogonal stimulus-response compatibility group studies approach. Results: Recent studies have demonstrated that the orthogonal stimulus-response compatibility group study approach was most frequently used to formulate TCM herbal combination based on the TCM principles upon the selection of herbs, and the resulting formulated TCM formula exhibited desired outcomes in treating one of global concerned complex multi-syndromic diseases, the hypertension. These promising therapeutic effects were claimed to have been attributed by the holistic signaling mechanism pathways employed by the crude combination of herbs. Conclusion: The present review could serve as a guide and prove the feasibility of TCM principles to be used for future pharmacological drug research development.

Autoregressive Modeling in Orthogonal Cutting of Glass Fiber Reinforced Composites (2차원 GFRC절삭에서 AR모델링에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.88-93
    • /
    • 2001
  • This study discusses frequency analysis based on autoregressive (AR) time series model, and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The resulting pattern vectors of AR coefficients are then passed to the feature extraction block. Inside the feature extraction block, only those features that are most sensitive to different types of cutting mechanisms are selected. The experimental correlations between the different chip formation mechanisms and AR model coefficients are established.

  • PDF

An Estimation on Failure Boundary Condition of Rocker Arm Shaft for 4-Cylinder SOHC Engine Using Orthogonal Array (직교배열표를 이용한 4기통 SOHC 엔진용 로커암 축의 파손경계조건 평가에 관한 연구)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1161-1168
    • /
    • 2005
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure analysis of rocker arm shaft is needed. Because more than $30\%$ of vehicles investigated have been fractured. Failure analysis is classified into an naked eyes, microscope and X-ray fractography etc. It can predict applied load as well as load type. These methods are applicable to components with simple boundary condition but aren't applicable to components with complex boundary condition. The existing fractography don't catch hold of failure boundary condition quantitatively. Especially, in case that the components isn't fractured at same position. We must determine the most dangerous failure boundary condition to evaluate their operation mechanism. The effect of various factors on response should be estimated to solve this statical problem. This study presents the most dangerous failure boundary condition of rocker arm shaft using orthogonal array and ANOVA in order to assure its robustness.

Atomic Force Microscope for Standard Length Metrology (직교 스캐너와 레이저 간섭계를 사용한 교정용 원자현미경)

  • Lee, Dong-Yeon;Kim, Dong-Min;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1611-1617
    • /
    • 2006
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nano-metrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF