• Title/Summary/Keyword: Orthodontic mini-implants

Search Result 45, Processing Time 0.021 seconds

STUDY OF MAXILLARY CORTICAL BONE THICKNESS FOR SKELETAL ANCHORAGE SYSTEM IN KOREAN (Skeletal Anchorage System의 식립을 위한 한국인 악골의 피질골 두께에 대한 연구)

  • Kim, Ji-Hyuck;Joo, Jae-Yong;Park, Young-Wook;Cha, Bong-Kuen;Kim, Soung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.249-255
    • /
    • 2002
  • Recently, Skeletal Anchorage System (SAS) has been focused clinically with the view point that it could provide the absolute intraoral anchorage. First, it began to be used for the patient of orthognathic surgery who had difficulty in taking intermaxillary fixation due to multiple loss of teeth. And then, its uses have been extended to many cases, the control of bone segments after orthognathic surgery, stable anchorage in orthodontic treatment, and anchorage for temporary prosthesis and so on. SAS has been developed as dental implants technique has been developed and also called in several names; mini-screw anchorage, micro-screw anchorage, mini-implant anchorage, micro-implant anchorage (MIA), and orthosystem implant etc. Now many clinicians use SAS, but the anatomical knowledges for the installed depth of intraosseous screws are totally dependent on general experiences. So we try to study for the cortical thickness of maxilla and mandible in Korean adults without any pathologic conditions with the use of Computed Tomography at the representative sites for the screw installation.

Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length (다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석)

  • Choi, Bohm;Lee, Dong-Ok;Mo, Sung-Seo;Kim, Seong-Hun;Park, Ki-Ho;Chung, Kyu-Rhim;Nelson, Gerald;Han, Seong-Ho
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

Three dimensional analysis of tooth movement using different sizes of NiTi wire on NiTi scissors-bite corrector (NiTi scissors-bite corrector의 와이어 굵기에 따른 3차원적 치아 이동 양상)

  • Jeon, Hyun-Ju;Park, Sun-Hyung;Jung, Sang-Hyuk;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.39 no.1
    • /
    • pp.43-53
    • /
    • 2009
  • Objective: The purpose of this study was to compare the difference in three dimensional tooth movement using three different wire sizes($0.018{\times}0.025-in,\;0.016{\times}0.022-in$ 0.016-in) on a NiTi scissors-bite corrector. Methods: Computed tomography(CT) images of the experimental model before and after tooth movement were taken and reconstructed into three dimensional models for superimposition. The direction and the amount of tooth movement were measured and analyzed statistically. Results: The lingual and intrusive movements of the crown of the maxillary second molar were increased as the size of the NiTi wire increased. The roots of the maxillary second metals moved buccally except for the 0.016-in group. The intrusive movement of the roots of the maxillary second molars was increased as the size of the NiTi wire increased. Due to the use of orthodontic mini-implants, anchorage loss was under 0.2 mm on average. Conclusions: The $0.018{\times}0.025-in$ NiTi wire was most effective in lingual and intrusive movement of the maxillary second molar which was in scissors-bite position. Indirect skeletal anchorage with a single orthodontic mini-implant was rigid enough to prevent anchorage loss.

Sex-, growth pattern-, and growth status-related variability in maxillary and mandibular buccal cortical thickness and density

  • Schneider, Sydney;Gandhi, Vaibhav;Upadhyay, Madhur;Allareddy, Veerasathpurush;Tadinada, Aditya;Yadav, Sumit
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.108-119
    • /
    • 2020
  • Objective: The primary objective of this study was to quantitatively analyze the bone parameters (thickness and density) at four different interdental areas from the distal region of the canine to the mesial region of the second molar in the maxilla and the mandible. The secondary aim was to compare and contrast the bone parameters at these specific locations in terms of sex, growth status, and facial type. Methods: This retrospective cone-beam computed tomography (CBCT) study reviewed 290 CBCT images of patients seeking orthodontic treatment. Cortical bone thickness in millimeters (mm) and density in pixel intensity value were measured for the regions (1) between the canine and first premolar, (2) between the first and second premolars, (3) between the second premolar and first molar, and (4) between the first and second molars. At each location, the bone thickness and density were measured at distances of 2, 6, and 10 mm from the alveolar crest. Results: The sex comparison (male vs. female) in cortical bone thickness showed no significant difference (p > 0.001). The bone density in growing subjects was significantly (p < 0.001) lower than that in non-growing subjects for most locations. There was no significant difference (p > 0.001) in bone parameters in relation to facial pattern in the maxilla and mandible for most sites. Conclusions: There was no significant sex-related difference in cortical bone thickness. The buccal cortical bone density was higher in females than in males. Bone parameters were similar for subjects with hyperdivergent, hypodivergent, and normodivergent facial patterns.

Quantitative evaluation of cortical bone and soft tissue thickness in the mandible (하악 피질골과 연조직의 해부학적 두께를 위한 정량적 평가)

  • Lee, Soo-Kyung;Chun, Youn-Sic;Lim, Won-Hee
    • The korean journal of orthodontics
    • /
    • v.37 no.3 s.122
    • /
    • pp.212-219
    • /
    • 2007
  • Objective: The purpose of this study was to provide an anatomical reference for cortical bone and soft tissue thickness, and the attached gingiva width in the mandible. Methods: Fifteen males and fifteen females participated in this study. An acrylic template was fabricated and the radiopaque markers were bonded on the estimated alveolar crest to take measurements of the hard and soft tissue thickness at the same locations. CT images were taken in samples wearing an acrylic template. Cortical bone and soft tissue thickness were measured at 2, 4, 6 and 8 mm from the alveolar crest in interradicular spaces from central incisor to first permanent molar. The attached gingival width was calibrated. Results: Cortical bone thickness was $1.33{\pm}0.38mm$ and soft tissue thickness was $1.49{\pm}0.54mm$. Cortical bone thickness was increased in the posterior area, while it was not the case for the soft tissue thickness. In addition, the total thickness was $2.82{\pm}0.70$. The attached gingival width was wider in the anterior area compared to that in posterior area. Conclusion: These results suggest that the attached gingiva width should be considered upon placement of mini-implants in the mandibular posterior area for orthodontic anchorage.