• Title/Summary/Keyword: Ortho-Images

Search Result 133, Processing Time 0.032 seconds

Development of Value-added Product Generation Software from Satellite Imagery: 'Valadd-Pro' (고부가 정보 추출을 위한 위성 영상 처리 소프트웨어의 개발: '발라드-프로')

  • Lee, Hae Yeoun;Park, Wonkyu;Kim, S.A.B.;Kim, Taejung;Yoon, Taehun;Shin, Dongseok;Lee, Heungkyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • To extract value-added products from satellite images for the benefit of science and human life, the Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed an integrated software 'Valadd-Pro'. In this paper, the 'Valadd-Pro' software is briefly introduced and its main components such as geometric correction, ortho correction and digital elevation model extraction are described. The performances of the 'Valadd-Pro' was assessed on $60km{\times}60km$ SPOT panchromatic images using ground control points from GPS measurements. Also, the height accuracy was measured by comparing our results with the $DTEDs^3$ produced by USGS and the DEM generated from the digitized countours of maps produced by the National Geographic Institute. In geometric correction, the 'Valadd-Pro' software needed fewer ground control points than a commercial software 'P' for the satisfactory results. In ortho correction, the 'Valadd-Pro' software show the similar performance to a commercial software 'P'. In digital elevation model extraction, the 'Valadd-Pro' software is two times more accurate and four times faster than a commercial software 'P'.

  • PDF

Use of Unmanned Aerial Vehicle for Forecasting Pine Wood Nematode in Boundary Area: A Case Study of Sejong Metropolitan Autonomous City (무인항공기를 이용한 소나무재선충병 선단지 예찰 기법: 세종특별자치시를 중심으로)

  • Kim, Myeong-Jun;Bang, Hong-Seok;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.100-109
    • /
    • 2017
  • This study was conducted for preliminary survey and management support for Pine Wood Nematode (PWN) suppression. We took areal photographs of 6 areas for a total of 2,284 ha during 2 weeks period from 15/02/2016, and produced 6 ortho-images with a high resolution of 12 cm GSD (Ground Sample Distance). Initially we classified 423 trees suspected for PWN infection based on the ortho-images. However, low accuracy was observed due to the problems of seasonal characteristics of aerial photographing and variation of forest stands. Therefore, we narrowed down 231 trees out of the 423 trees based on the initial classification, snap photos, and flight information; produced thematic maps; conducted field survey using GNSS; and detected 23 trees for PWN infection that was confirmed by ground sampling and laboratory analysis. The infected trees consisted of 14 broad-leaf trees, 5 pine trees (2 Pinus rigida), and 4 other conifers, showing PWN infection occurred regardless of tree species. It took 6 days for 2.3 men from to start taking areal photos using UAV (Unmanned Aerial Vehicle) to finish detecting PNW (Pine Wood Nematode) infected tress for over 2,200 ha, indicating relatively high efficacy.

Production and Accuracy Analysis of Topographic Status Map Using Drone Images (드론영상을 이용한 지형 현황도 제작 및 정확도 분석)

  • Kim, Doopyo;Back, Kisuk;Kim, Sungbo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2021
  • Photogrammetry using drone can produce high-resolution ortho image and acquire high-accuracy 3D information, which is useful. Therefore, this study attempted to determine the possibility of using drone-photogrammetry in park construction by producing a topographic map using drone-photogrammetry and analyzing the problems and accuracy generated during production. For this purpose, we created ortho image and DSM (digital surface model) using drone images and created topographic status map by vectorizing them. Accuracy was compared based on topographic status map by GPS (global positioning system) and TS (total station). The resulting of analyzing mean of the residuals at check points showed that 0.044 m in plane and 0.066 m in elevation, satisfying the tolerance range of 1/1,000 numerical maps, and result of compared lake size showed a difference of about 4.4%. On the other hand, it was difficult to obtain accurate height values for terrain in which existed vegetation when producing the topographic map, and in the case of underground buried objects, it is not possible to confirm it in the image, so direct spatial information acquisition was necessary. Therefore, it is judged that the topographic status map using drone photogrammetry can be efficiently constructed if direct spatial data acquisition is achieved for some terrain.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques (랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류)

  • Seo, Hong Deok;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Due to the development of information and communication technology, the production and processing speed of data is getting faster. To classify objects using machine learning, which is a field of artificial intelligence, data required for training can be easily collected due to the development of internet and geospatial information technology. In the field of geospatial information, machine learning is also being applied to classify or recognize objects using images and point clouds. In this study, the problem of manually constructing training data using existing digital map version 1.0 was improved, and the technique of classifying roads, buildings and vegetation using image and point clouds were proposed. Through experiments, it was possible to classify roads, buildings, and vegetation that could clearly distinguish colors when using true ortho-image with only RGB (Red, Green, Blue) bands. However, if the colors of the objects to be classified are similar, it was possible to identify the limitations of poor classification of the objects. To improve the limitations, random forest and support vector machine techniques were applied after band fusion of true ortho-image and normalized digital surface model, and roads, buildings, and vegetation were classified with more than 85% accuracy.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Image Registration of Drone Images through Association Analysis of Linear Features (선형정보의 연관분석을 통한 드론영상의 영상등록)

  • Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.441-452
    • /
    • 2017
  • Drones are increasingly being used to investigate disaster damage because they can quickly capture images in the air. It is necessary to extract the damaged area by registering the drones and the existing ortho-images in order to investigate the disaster damage. In this process, we might be faced the problem of registering two images with different time and spatial resolution. In order to solve this problem, we propose a new methodology that performs initial image transformation using line pairs extracted from images and association matrix, and final registration of images using linear features to refine the initial transformed result. The applicability of the newly proposed methodology in this study was evaluated through experiments using artifacts and the natural terrain areas. Experimental results showed that the root mean square error of artifacts and the natural terrain was 1.29 pixels and 4.12 pixels, respectively, and relatively high accuracy was obtained in the region with artifacts extracted a lot of linear information.

Automatic Generation of Land Cover Map Using Residual U-Net (Residual U-Net을 이용한 토지피복지도 자동 제작 연구)

  • Yoo, Su Hong;Lee, Ji Sang;Bae, Jun Su;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.535-546
    • /
    • 2020
  • Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.

A Study on the Stereo Image Map Generation of Chuncheon Area using Satellite Overlay Images (위성영상을 이용한 춘천지역의 3차원 입체영상지도 생성에 관한 연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • Satellite remote sensing images have much more information compared to a paper map. But these images are generally handled as particular image format gained from optical sensor, and must be processed and analyzed by computer with high priced digital image processing system. For the extraction of digital elevation model(DEM) from satellite image, we used the overlay image by SPOT-3 of Chuncheon area at the Kangwon province. According to the image condition, the precious geometric correction, the bundle adjustment for ortho-image generation and the stereo image mapping by several technical approaches were processed. So that we developed the methods of automatic DEM extraction and efficient stereo image map generation which can improve the digital image processing steps. Also, we applied the multiple direction birdeye view image for modeling and analysis using the remotely sensed overlay images with high resolution.

  • PDF