Lee, Hae Yeoun;Park, Wonkyu;Kim, S.A.B.;Kim, Taejung;Yoon, Taehun;Shin, Dongseok;Lee, Heungkyu
Journal of the Korean Association of Geographic Information Studies
/
v.2
no.3
/
pp.91-100
/
1999
To extract value-added products from satellite images for the benefit of science and human life, the Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed an integrated software 'Valadd-Pro'. In this paper, the 'Valadd-Pro' software is briefly introduced and its main components such as geometric correction, ortho correction and digital elevation model extraction are described. The performances of the 'Valadd-Pro' was assessed on $60km{\times}60km$ SPOT panchromatic images using ground control points from GPS measurements. Also, the height accuracy was measured by comparing our results with the $DTEDs^3$ produced by USGS and the DEM generated from the digitized countours of maps produced by the National Geographic Institute. In geometric correction, the 'Valadd-Pro' software needed fewer ground control points than a commercial software 'P' for the satisfactory results. In ortho correction, the 'Valadd-Pro' software show the similar performance to a commercial software 'P'. In digital elevation model extraction, the 'Valadd-Pro' software is two times more accurate and four times faster than a commercial software 'P'.
This study was conducted for preliminary survey and management support for Pine Wood Nematode (PWN) suppression. We took areal photographs of 6 areas for a total of 2,284 ha during 2 weeks period from 15/02/2016, and produced 6 ortho-images with a high resolution of 12 cm GSD (Ground Sample Distance). Initially we classified 423 trees suspected for PWN infection based on the ortho-images. However, low accuracy was observed due to the problems of seasonal characteristics of aerial photographing and variation of forest stands. Therefore, we narrowed down 231 trees out of the 423 trees based on the initial classification, snap photos, and flight information; produced thematic maps; conducted field survey using GNSS; and detected 23 trees for PWN infection that was confirmed by ground sampling and laboratory analysis. The infected trees consisted of 14 broad-leaf trees, 5 pine trees (2 Pinus rigida), and 4 other conifers, showing PWN infection occurred regardless of tree species. It took 6 days for 2.3 men from to start taking areal photos using UAV (Unmanned Aerial Vehicle) to finish detecting PNW (Pine Wood Nematode) infected tress for over 2,200 ha, indicating relatively high efficacy.
Photogrammetry using drone can produce high-resolution ortho image and acquire high-accuracy 3D information, which is useful. Therefore, this study attempted to determine the possibility of using drone-photogrammetry in park construction by producing a topographic map using drone-photogrammetry and analyzing the problems and accuracy generated during production. For this purpose, we created ortho image and DSM (digital surface model) using drone images and created topographic status map by vectorizing them. Accuracy was compared based on topographic status map by GPS (global positioning system) and TS (total station). The resulting of analyzing mean of the residuals at check points showed that 0.044 m in plane and 0.066 m in elevation, satisfying the tolerance range of 1/1,000 numerical maps, and result of compared lake size showed a difference of about 4.4%. On the other hand, it was difficult to obtain accurate height values for terrain in which existed vegetation when producing the topographic map, and in the case of underground buried objects, it is not possible to confirm it in the image, so direct spatial information acquisition was necessary. Therefore, it is judged that the topographic status map using drone photogrammetry can be efficiently constructed if direct spatial data acquisition is achieved for some terrain.
Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1479-1488
/
2022
Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.405-416
/
2019
Due to the development of information and communication technology, the production and processing speed of data is getting faster. To classify objects using machine learning, which is a field of artificial intelligence, data required for training can be easily collected due to the development of internet and geospatial information technology. In the field of geospatial information, machine learning is also being applied to classify or recognize objects using images and point clouds. In this study, the problem of manually constructing training data using existing digital map version 1.0 was improved, and the technique of classifying roads, buildings and vegetation using image and point clouds were proposed. Through experiments, it was possible to classify roads, buildings, and vegetation that could clearly distinguish colors when using true ortho-image with only RGB (Red, Green, Blue) bands. However, if the colors of the objects to be classified are similar, it was possible to identify the limitations of poor classification of the objects. To improve the limitations, random forest and support vector machine techniques were applied after band fusion of true ortho-image and normalized digital surface model, and roads, buildings, and vegetation were classified with more than 85% accuracy.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.568-573
/
2018
UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.6
/
pp.441-452
/
2017
Drones are increasingly being used to investigate disaster damage because they can quickly capture images in the air. It is necessary to extract the damaged area by registering the drones and the existing ortho-images in order to investigate the disaster damage. In this process, we might be faced the problem of registering two images with different time and spatial resolution. In order to solve this problem, we propose a new methodology that performs initial image transformation using line pairs extracted from images and association matrix, and final registration of images using linear features to refine the initial transformed result. The applicability of the newly proposed methodology in this study was evaluated through experiments using artifacts and the natural terrain areas. Experimental results showed that the root mean square error of artifacts and the natural terrain was 1.29 pixels and 4.12 pixels, respectively, and relatively high accuracy was obtained in the region with artifacts extracted a lot of linear information.
Yoo, Su Hong;Lee, Ji Sang;Bae, Jun Su;Sohn, Hong Gyoo
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.5
/
pp.535-546
/
2020
Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.
RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.
Journal of the Korean Association of Geographic Information Studies
/
v.3
no.4
/
pp.1-10
/
2000
Satellite remote sensing images have much more information compared to a paper map. But these images are generally handled as particular image format gained from optical sensor, and must be processed and analyzed by computer with high priced digital image processing system. For the extraction of digital elevation model(DEM) from satellite image, we used the overlay image by SPOT-3 of Chuncheon area at the Kangwon province. According to the image condition, the precious geometric correction, the bundle adjustment for ortho-image generation and the stereo image mapping by several technical approaches were processed. So that we developed the methods of automatic DEM extraction and efficient stereo image map generation which can improve the digital image processing steps. Also, we applied the multiple direction birdeye view image for modeling and analysis using the remotely sensed overlay images with high resolution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.