• Title/Summary/Keyword: Ortho-Images

Search Result 133, Processing Time 0.03 seconds

Detecting and Restoring the Occlusion Area for Generating the True Orthoimage Using IKONOS Image (IKONOS 정사영상제작을 위한 폐색 영역의 탐지와 복원)

  • Seo Min-Ho;Lee Byoung-Kil;Kim Yong-Il;Han Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2006
  • IKONOS images have the perspective geometry in CCD sensor line like aerial images with central perspective geometry. So the occlusion by buildings, terrain or other objects exist in the image. It is difficult to detect the occlusion with RPCs(rational polynomial coefficients) for ortho-rectification of image. Therefore, in this study, we detected the occlusion areas in IKONOS images using the nominal collection elevation/azimuth angle and restored the hidden areas using another stereo images, from which the rue ortho image could be produced. The algorithm's validity was evaluated using the geometric accuracy of the generated ortho image.

Suitability of the PKNU 2 System for Generating the Orthophoto Map

  • Lee, Eun-Khung;Lee, Chang-Hun;Choi, Chul-Uong;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.100-102
    • /
    • 2003
  • This system is capable of obtaining quantitative information from images using natural features on the ortho-image maps that correspond with those from topographical maps. However, the qualitative information can also be obtained because because of the excellent visibility of ortho-image maps. There are plenty of promise for the use of ortho-image maps in the next generation topographic technology because of its wider applicability within the field. In keeping with the cutting edge, we produced ortho-image maps by scanning a specified area in narrow sections using the PKNU 2: a multispectral digital aerial photographing system made by ourselves. We evaluated the precision of the ortho-image maps, and performed an evaluation of the PKNU 2 system's capacity to improve the equipment of the PKNU 2. Ortho-image maps were made using Ground Control Points (GCPs) which were obtained from digital maps and aerial photographs of the PKNU 2. Thus, we demonstrated that it was possible to produce the ortho-image maps, which has a good constant level rate of less than 1m. The PKNU 2 system needs to be improving in the sensitivity of level maintenance equipment in the evaluation in terms of performance. It is thus required to survey the GCPs precisely for an accurate study.

  • PDF

Extraction of the Tree Regions in Forest Areas Using LIDAR Data and Ortho-image (라이다 자료와 정사영상을 이용한 산림지역의 수목영역추출)

  • Kim, Eui Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2013
  • Due to the increased interest in global warming, interest in forest resources aimed towards reducing greenhouse gases have subsequently increased. Thus far, data related to forest resources have been obtained, through the employment of aerial photographs or satellite images, by means of plotting. However, the use of imaging data is disadvantageous; merely, due to the fact that recorded measurements such as the height of trees, in dense forest areas, lack accuracy. Within such context, the authors of this study have presented a method of data processing in which an individual tree is isolated within forested areas through the use of LIDAR data and ortho-images. Such isolation resulted in the provision of more efficient and accurate data in regards to the height of trees. As for the data processing of LIDAR, the authors have generated a normalized digital surface model to extract tree points via local maxima filtering, and have additionally, with motives to extract forest areas, applied object oriented image classifications to the processing of data using ortho-images. The final tree point was then given a figure derived from the combination of LIDAR and ortho-images results. Based from an experiment conducted in the Yongin area, the authors have analyzed the merits and demerits of methods that either employ LIDAR data or ortho-images and have thereby obtained information of individual trees within forested areas by combining the two data; thus verifying the efficiency of the above presented method.

Automatic Extraction of the Building Using IKONOS Ortho-Image (IKONOS 정사영상을 이용한 건물의 자동추출)

  • 이재기;정성혁;임인섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • As recently, high-resolution satellite images of 1m spatial resolution are opened to the public and able to be used commercially, the studies that make ortho-images using them and apply to digital mapping and database of geo-spatial information system are having been progressed actively. Therefore, the purposes of this study are to establish the auto-extraction methods and to develope algorithms for automatically extracting buildings out of man-made structures, after making the IKONOS ortho-image. As the result of this study, we can extract buildings automatically at 72% out of the whole buildings. And we have analyzed the error trend by means of the comparison with ortho-image, digital map and drawing result, then we could know that obtain the good result for extraction of the building through the methods and algorithms of this study.

Application Study on the View Points Analysis for National Roads Route using Digital Elevation Data

  • Yeon, Sang-Ho;Hong, Ill-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.292-296
    • /
    • 2002
  • This study has been accomplished as a experimental study for field application of 3D Perspective Image Map creation using Digital Topographical Map and based on the Ortho-Projection Image which is generated from Satellite Overlay Images and the precise Relative Coordinates of longitude, latitude and altitude which is corrected by GCP(Ground Control Point). AS to Contour Lines Map which is created by Coordinate conversion of 1:5,000 Topographical Map, we firstly made Satellite Image Map to substitute for Digital Topographical Map through overlapping the original images on top of each Ortho-Projection Image created and checking the accuracy. In addition to 3D Image Map creation for 3D Terrain analysis of a target district, Slope Gradient Analysis, Aspect Analysis and Terrain Elevation Model generation, multidirectional 3D Image generation by DEM can be carried out through this study. This study is to develop a mapping technology with which we can generate 3D Satellite Images of a target district through the composition of Digital Maps and Facility Blueprint and arbitrarily create 3D Perspective Images of the target district from any view point.

  • PDF

A Study on True Ortho-photo Generation Using Epipolar Geometry and Classification Algorithm (에피폴라 기하와 군집화 알고리즘을 이용한 정밀 정사투영영상 제작에 관한 연구)

  • Oh, Kum-Hui;Hwang, Hyun-Deok;Kim, Jun-Chul;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.633-641
    • /
    • 2008
  • This study introduces the method of detecting and restoring occlusion areas by using epipolar algorithm and K-means classification algorithm for true ortho-photo generation. In the past, the techniques of detecting occlusion areas are using the reference images or information of buildings. But, in this study the occlusion areas can be automatically detected by using DTM data and exterior orientation parameters. The detected occlusion areas can be restored by using anther images or the computed values which are determined in K-means classification algorithm. In addition, this method takes advantages of applying epipolar algorithm in order to find same location in overlapping areas among images.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

Satellite Image Processing Software for Value-Added Products

  • Lee, Hae-Yeoun;Park, Won-Kyu;Kim, Seung-Bum;Kim, Tae-Jung;Yoon, Tae-Hun;Shin, Dong-Seok;Lee, Heung-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.339-348
    • /
    • 1999
  • To extract value-added products which are important in scientific area and practical life, e.g. digital elevation models, ortho-rectified images and geometric corrected images, Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed a satellite image processing software called "Valadd-Pro". In this paper, "Valadd-Pro" software is briefly introduced and its main components such as precise geometric correction, ortho-rectification and digital elevation model extraction component are described. The performance of "Valadd-Pro" software was assessed on 10m resolution 6000 $\times$ 6000 SPOT panchromatic images (60km $\times$ 60km) using ground control points from GPS measurements. The height accuracy was measured by comparing our results with 100m resolution $DTEDs^{1)}$ produced by USGS and 60m resolution DEMs generated from digitized contours produced by National Geography Institute. Also, to show the superior performance of "Valadd-Pro" software, we compared the performance with that of commonly used PCI$\circledR$ commercial software. Based on the results, the geometric correction of "Valadd-Pro" software needs fewer ground control points than that of PCI$\circledR$ software and the ortho-rectification of "Valadd-Pro" software shows similar performance to that of PCI$\circledR$ software. In the digital elevation model extraction, "Valadd-Pro" software is two times more accurate and four times faster than PCI$\circledR$ software.ccurate and four times faster than PCI$\circledR$ software.

Development of Basic Application Software for KOMPSAT High Resolution Images

  • Park S. Y.;Lee K. J.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.509-511
    • /
    • 2004
  • This paper outlines the development of image processing system, which will allow the general users in Government and Public organizations easily to use and apply KOMPSAT EOC images in their own business. The system includes an import/export module of EOC image distributed in Hierarchical Data Format (HDF) file and various image processing analysis modules. Especially, the image mosaic and subset functions are designed to use EOC image as an image map, generating the Ortho-image module. To update the various spatial data with EOC image, some essential modules such as change detection by pattern recognition, overlay between images and vector data, and modification of vector data are implemented in the system. The system is developed based on the user request analysis of government agency, and suited for more efficient use of satellite image in public applications. Such system is expected to contribute to practical application of KOMPSAT-2 that will be launched in 2005. Further efforts will be made to accommodate the KOMPSAT -2 MSC data.

  • PDF

3D Line Segment Detection from Aerial Images using DEM and Ortho-Image (DEM과 정사영상을 이용한 항공 영상에서의 3차원 선소추출)

  • Woo Dong-Min;Jung Young-Kee;Lee Jeong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.174-179
    • /
    • 2005
  • This paper presents 3D line segment extraction method, which can be used in generating 3D rooftop model. The core of our method is that 3D line segment is extracted by using line fitting of elevation data on 2D line coordinates of ortho-image. In order to use elevations in line fitting, the elevations should be reliable. To measure the reliability of elevation, in this paper, we employ the concept of self-consistency. We test the effectiveness of the proposed method with a quantitative accuracy analysis using synthetic images generated from Avenches data set of Ascona aerial images. Experimental results indicate that the proposed method shows average 30 line errors of .16 - .30 meters, which are about $10\%$ of the conventional area-based method.