• Title/Summary/Keyword: Ortho Mosaic Imagery

Search Result 5, Processing Time 0.018 seconds

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

Semantic Segmentation of Hazardous Facilities in Rural Area Using U-Net from KOMPSAT Ortho Mosaic Imagery (KOMPSAT 정사모자이크 영상으로부터 U-Net 모델을 활용한 농촌위해시설 분류)

  • Sung-Hyun Gong;Hyung-Sup Jung;Moung-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1693-1705
    • /
    • 2023
  • Rural areas, which account for about 90% of the country's land area, are increasing in importance and value as a space that performs various public functions. However, facilities that adversely affect residents' lives, such as livestock facilities, factories, and solar panels, are being built indiscriminately near residential areas, damaging the rural environment and landscape and lowering the quality of residents' lives. In order to prevent disorderly development in rural areas and manage rural space in a planned manner, detection and monitoring of hazardous facilities in rural areas is necessary. Data can be acquired through satellite imagery, which can be acquired periodically and provide information on the entire region. Effective detection is possible by utilizing image-based deep learning techniques using convolutional neural networks. Therefore, U-Net model, which shows high performance in semantic segmentation, was used to classify potentially hazardous facilities in rural areas. In this study, KOMPSAT ortho-mosaic optical imagery provided by the Korea Aerospace Research Institute in 2020 with a spatial resolution of 0.7 meters was used, and AI training data for livestock facilities, factories, and solar panels were produced by hand for training and inference. After training with U-Net, pixel accuracy of 0.9739 and mean Intersection over Union (mIoU) of 0.7025 were achieved. The results of this study can be used for monitoring hazardous facilities in rural areas and are expected to be used as basis for rural planning.

Improvement of Satellite Image Value-Added Processing System and Performance Evaluation (위성영상 부가처리시스템(VAPS) 개선 및 성능평가)

  • Lee, Kwangjae;Kim, Eunseon;Moon, Jungye;Kim, Younsoo
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2014
  • The Value-Added Processing System(VAPS) was developed for post-processing the KOMPSAT imagery. Recently software version and hardware specification of VAPS were changed for improving the VAPS performance. The purpose of this study is to describe about the improvement of existing VAPS(ver.1.0) and systematically evaluate the performance of the improved VAPS(ver.2.0). To this end, test-bed areas in South and North Korea were selected and then image processing tests were conducted using KOMPSAT-2 and KOMPSAT-3 imagery in both areas. In conclusion, VAPS(ver.2.0) had an ability to generate the high level products like ortho images and mosaic images. Image processing time using the Graphic Processing Unit(GPU) on ver.2.0 was enhanced up to 10 times than ver.1.0.

Improvement of KOMPSAT Imagery Locational Accuracy Using Value-Added Processing System (부가처리시스템을 이용한 다목적실용위성 영상자료 위치정확도 개선)

  • LEE, Kwang-Jae;YUN, Hee-Cheon;KIM, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.68-80
    • /
    • 2015
  • To increase the utilization of the KOrea Multi-Purpose SATellite(KOMPSAT) series imagery being developed pursuant to the national space development program, high quality images with enhanced locational accuracy should be created through standardized post-processing processes. In the present study, using the Value-Added Processing System(VAPS) constructed for the post-processing of KOMPSAT imagery, location correction experiments were conducted using KOMPSAT-2 and -3 imagery from domestic and overseas regions. First, 50 pieces from each of KOMPSAT-2 imagery were selected from South Korean and North Korean regions, and modeling was conducted using GCP Chips. According to the results, the Root Mean Square Errors(RMSE) for South Korea and North Korea were 1.59 pixels and 2.04 pixels, respectively, and the locational accuracy of ortho mosaic imagery using check points were 1.33m(RMSE) and 1.90m(RMSE), respectively. Meanwhile, in the case of overseas regions for which GCP could not be easily obtained, the improvement of locational accuracy could be identified through image corrections using Open Street Map(OSM). The VAPS and reference materials used in the present study are expected to be very useful in constructing a precise image DB for entire global regions.