• Title/Summary/Keyword: Orogenic

Search Result 83, Processing Time 0.02 seconds

Hercynian Orogenic Cycle in the Eastern Asia (동아(東亞)에 있어서의 헤르시니아 운동(運動))

  • Son, Chi Moo
    • Economic and Environmental Geology
    • /
    • v.4 no.2
    • /
    • pp.59-75
    • /
    • 1971
  • Orogenic cycle is closely related with sedimentary cycle, and a sedimentary cycle involves the birth, development and disappearance of a sedimentary basin. Paleontological studies have indicated that birth or disappearance of sedimentary basins of separated regions frequently coincided in time. In this paper, the writer presents his assumption on the East Asian analogy of the Hercynian orogenic cycle in accord to the above mentioned generalities. Previous studies, including mine have a corollary that Korea and Southern China, which had been uplifted by the Caledonian movement, changed into low-lying region with subsiding areas in the Givetian time. The writer, thus, thinks that the Hercynian orogenic cycle started in Givetian, and that the Mongolian geosyncline in China, the Gangweon Basin in Korea and the Honshu geosyncline in Japan disappeared in the Ladinian. The writer, therefore, thinks that the Ladinian marks the end of the Hercynian orogenic cycle, but this assumption will have to be rechecked in consideration with the Alpine orogenic cycle. The Late Namurian-Early Bashkirian time, the dividing period between the early and late Hercynian orogenic cycle, is thought to correspond the time of the Hongjeom Series deposition. The writer is also of the view that the Akiyoshi orogenic cycle(T. Kobayashi) corresponds the late Hercynian phase, and that the Abenian movements(M. Minato) corresponds to the range from the late Caledonian phase to the former part of late Hercynian phase.

  • PDF

Revised Geology of the Deokjeok and Soya Islands in the Central-western Korean Peninsula

  • Park, Jeong-Yeong;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.631-643
    • /
    • 2020
  • The central-western Korean Peninsula contains records of an Early Mesozoic collisional event related to the final amalgamation of the East Asian continent. Here, we present a renewed geologic map of the Deokjeok and Soya islands in the central-western Korean Peninsula and its explanatory note. Our geologic map was based on a detailed investigation of the northeastern area of both islands, which is characterized by a complex fault and shear zone system that accommodated the crustal deformation related to the Mesozoic post-collisional orogenic collapse and the subsequent structural inversion. We suggest future directions of study aiming at addressing issues regarding the deformational responses of crust to the Mesozoic tectonic transition and orogenic cycles.

The Petrochemical and Structural Study on the Charyong Batholith and its Associated Metallic Deposits (차령화강암(車嶺花崗岩) 저반(底盤)과 이에 관련된 금속광상(金屬鑛床)의 암석학적(岩石學的) 및 지질구조적(地質構造的) 연구(硏究))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.10 no.3
    • /
    • pp.107-117
    • /
    • 1977
  • The Charyong batholith extends northeasterly from the west coast to the west of Wonju in the central parts of Korean Penninsula. The batholith is separated by the metamorphic complex into the northern and the southern granites. and is believed to intrude during the Daebo orogeny of early Jurassic to early Cretaceous age. It constitutes a sort of anticlinorium and the metamorphic complex can be regarded as a huge roof pendant. The modal analysis indicates that the Charyong batholith belongs to a series of adamellite-granodiorte-to-nalite. The oxidation property happened during a magmatic segregation reveals that the batholith shows in general orogenic assimilation trend. The granites of early to middle Jurassic age show orogenic assimilation trend, whereas those of late Jurassic to early Cretaceous age post orogenic noassimilation trend. The fracture system of the whole region is two folds: the fractures having attitute of $N25{\sim}40^{\circ}E$ and $70^{\circ}SE$ are regarded as tension fractures, and those of NS, and 50E to vertical and $N50^{\circ}E$ and $80^{\circ}E$ to vertical as shear fractures. All these facts suggest definitely that the Charyong batholith is the syntectonic intrusives during the Daebo orogeny. The mineral deposits in the area studied are gold-silver deposits in majority which was named by O,J.Kim(1970) as the Chonan metallogenic province. They are sulfides baring quartz veins which were emplaced along the tension and shear fractures originated by the Daebo orogeny.

  • PDF

Effects of Geological Conditions on the Geomorphological Development of the Southwestern Coastal Regions of Korea (서남해안지역(西南海岸地域)의 지형발달(地形發達)에 미친 지질조건(地質條件))

  • Kim, Suh Woon
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 1971
  • The geotectonics and geomorphic structure of Korea resulted from the Song-rim Disturbance and the Daebo orogenic movements. Afterward this mountainous peninsula underwent several geological changes on a small scale, and it was also claimed that the steady rising of the elevated peneplain of the eastern coast and the submerging of the southwestern coastal area are largely due to the tilted block movement. These views have been generally accepted good in several ways, but they are limited in range or lacking in theoretical integration. The present writer investigated the geology of the Mt. Chi-ri-san and the Honam coal mining area for a geological map in 1965, respectively. The results of these studies convinced the present writer that the conventional views, which were based upon a theory of lateral pressure should be reconsidered in many respects, and more recent studies made it clear that the morphological development in the southwestern area can be better explained by the orogenic movement and rock control. The measurement of submerging speed of the western coastal area (Pak. Y. A., 1969) and a new account on the geology and tectonics of the Mid-central region of South Korea (Kim O.J., 1970) act as an encouragement to a new explanation. The present writer's researches on the extreme southwestern portion of the peninsula show that the steady submerging of this area cannot be attributed to a simple downthrown block phenomenon caused by block movement. It is no more than the result of the differential movement of uplifting in the eastern and western coastal areas and the rising of sea-level in the post-glacial period. This phenomenon could be easily explained by the comparison of the rate of rise in sea-level and amount of heat flow between Korea and other areas in the world. The existance of the erosional planes in the Sobaik-San ranges also provide an evidence of an upheaval in the western coast area. Though the Sobaik-San ranges largely follow the direction of the Sinian system. They consist of the numerous branches, whose trends run more or less differently from their main trend because of the disharmonic folding, are converged into Mt. Sobaik-San and Chupungryung. The undulation of the land is not wholely caused by orogenic movements, where as the present writer confirmed that the diversity of morphological development is the direct reflection of geological conditions such as rocks and processes which constitute the basic elements of geomorphic structure. An east-west directed mountain range which could be named as Hansan mountain range, was claimed to be oriented by the joint control. The geological conditions such as a special erosion and weathering of agglomerate and breccia tuff usually produce pot-hole like submarine features which cause the whirling phenomenon at the southwestern coast channel.

  • PDF

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting (남한의 중생대 금-은광화작용: 지구동력학적 관점에서 재검토된 금-은광상구)

  • Choi, Seon-Gyu;Park, Sang-Joon;Kim, Sung-Won;Kim, Chang-Seong;Oh, Chang-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.567-581
    • /
    • 2006
  • The Au-Ag lode deposits in South Korea are closely associated with the Mesozoic granitoids. Namely, the Jurassic deposits formed in mesozonal environments related to deep-seated granitoids, whereas the Cretaceous ones were developed in porphyry-related environments related to subvolcanic granitoids. The time-space relationships of the Au-Ag lode deposits in South Korea are closely related to the changing plate motions during the Mesozoic. Most of the Jurassic auriferous deposits (about $165{\sim}145$ Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, strike-slip faults and caldera-related fractures together with subvolcanic activity are associated with major strike-slip faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and probably have played an important role in the formation of the Cretaceous Au-Ag lode deposits (about $110{\sim}45$ Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in South Korea probably reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma due to regional changes in tectonic environment.