• 제목/요약/키워드: Orifice pipe

검색결과 78건 처리시간 0.023초

오리피스 유량계의 입구 속도 분포에 따른 유량 계측 왜곡 특성 (DISTORTION OF FLOW MEASUREMENT BY VARIOUS INLET VELOCITY PROFILE OF ORIFICE FLOWMETER)

  • 신병수;김남석;이상규;배용범;금오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.596-600
    • /
    • 2011
  • In this numerical analysis, the distortion of flow measurement by inlet velocity profile of orifice flowmeter was investigated. To validate the numerical method, the convergence was monitored and the grid dependency was also checked. realizable k-e model was selected and y+ was about 50 in this calculation. the results shows that the pressure at the pressure tab near pipe wall was changed by inclined inlet velocity profile and it leads to distorted a measurement values of flow through the orifice plate from -3.8% to 9%. Therefore, the fully developed inlet flow was required for accurate flow measurement by orifice flowmeter. If not, the orifice plate installed at wrong location should be re-installed or additional actions should be taken.

  • PDF

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

오리피스 유량계와 터빈 유량계의 직관부길이와 유동안정기에 관한 연구 (A Study of Straight Pipe Length and Straightener in Orifice Meter Turbine Meter)

  • 허재영;안승희;이강진;이승준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.265-271
    • /
    • 2000
  • Orifice meters and turbine meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate and also to analyze flow measurement errors of the turbine meter with and without straightener. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested In the standard, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the mon the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발 (Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency)

  • 구재현
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.7-14
    • /
    • 2009
  • 본 연구는 석탄화력발전소 노의 연소효율 향상을 위하여 미분탄 수송배관의 공기-입자 유동장의 압력손실 특성을 분석하여 미분탄 수송장치 내에 설치되어 유량을 제어하는 오리피스의 설계에 적용하고자 하는 것이다. 통상의 미분탄 수송배관장치는 관의 형태에 따라 직선관, 곡선관 및 엘보우로 구성된다. 본 연구에서는 공기유동과 입자운동의 상호작용 해석을 통하여 직선관과 곡선관을 갖는 미분탄 수송배관장치 내의 압력손실을 분석하였다. 총 압력손실은 공기-미분탄 입자의 마찰 손실 증가와 배관의 길이, 곡선관 각도의 증가에 따라 증가하는 것으로 확인되었다. 연구결과로 압력손실과 유량제어를 위한 최적화된 오리피스 설계 프로그램이 개발되었으며 그 계산 결과를 기존의 실험결과와 비교, 분석하였다.

  • PDF

오리피스 유량계의 유동헌팅 원인과 배관경과의 상관관계에 대한 배관망해석 연구 (A Pipeline Network Analysis on the Source and the Relation with Pipe Diameter of the Flow Hunting in a Orifice Meter)

  • 신창훈
    • 한국가스학회지
    • /
    • 제15권1호
    • /
    • pp.54-59
    • /
    • 2011
  • 일반적으로 유동헌팅현상은 대부분의 오리피스 유량계에서 관찰되나 유동헌팅의 크기는 각 계량 시스템에 따라 다르다. 이에, 실제 배관계통에서 배관경과 유동의 불안정성, 유동헌팅율간의 영향을 조사하고자 유량계 관경과 유량계 전후단 배관의 직경을 변경하면서 이에 따른 유동의 특성 변화와 헌팅율과의 관계에 대하여 1차원 배관망해석 모델을 구축하고 해석을 수행하였다. 결과적으로, 유량계 배관경과 전후단 배관경의 변화에 따른 차압변화량과 유동헌팅율의 영향을 분석하고 그 상관관계를 규명하였다.

현장여건에 따른 터빈 유량계와 오리피스 유량계의 정확도 비교 (A Comparison of Accuracy Between a Turbine and an Orifice Meter in the Field)

  • 안승희;허재영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.97-105
    • /
    • 1999
  • Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

특수배관에서의 아이스슬러리 유동특성 (Flow Characteristics of Ice Slurry in Special Pipings)

  • 이동원;윤찬일;임효묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.401-402
    • /
    • 2002
  • The flow characteristics of ice slurry which was made from $6.5{\%}$ ethylene glycol-water solution flowing in the special pipings including the enlargement, the contraction and the orifice were experimentally investigated. The flow patterns and the pressure drops were measured in acrylic pipes when the fraction of ice were varied from $0\;to\;30{\%}$. The pressure drop behavior of the contraction and the orifice appears to be similar to that of the elbow pipe, since these piping may provide similar frictional resistance to the elbow. In the mean while, the pressure drop increased unexpectedly high with the Ice fraction in the enlargement pipe. It seems that the onset of sharp increase in the pressure drop depends on the flowing time as well as the ice fraction and the flow rate.

  • PDF

LabView를 이용한 자동유량제어 시스템의 개발 (Development of automatic flow control system based on LabView)

  • 강태원;김두섭;안승규
    • 공학교육연구
    • /
    • 제19권2호
    • /
    • pp.3-7
    • /
    • 2016
  • A flow control system was designed and fabricated to control the flow rate of liquid through the pipe. This control system was composed of hardwares and software, hardwares as controller, gate valve, orifice meter and data aquisition board and software as National instruments Labview program. Control of flow rate was executed by adjusting the pneumatic valve located at the center of pipe line based on the control signal generated by LabView PID control algorithm, which converts analog signal measured by pressure difference of orifice to digital signal to adjust pneumatic valve. For the controller setup Ziegler-Nichols tuning technique was applied and control performances were investigated for not only the disturbance but also the set point changes. Developed system showed good control performances in flow control enough to use as teaching tool of feedback control theory and practice in university, and also as industrial application.

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber

  • Lee, Jae-Soo;Yoon, Yong-Nam;Kim, Joong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.77-86
    • /
    • 1996
  • An air chamber is design to keep the pressure from exceeding a predetermined value, or to prevent low pressures and colum separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chmber was applied to a hypthetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and pollytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is imcreased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF