• 제목/요약/키워드: Orientation of joints

검색결과 102건 처리시간 0.022초

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향 (Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint)

  • 윤호철
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

시추공 영상자료와 카이제곱 검정을 이용한 절리 방향성의 수직적 변화양상에 관한 정량적 평가 (Pearson-type Chi-square Test on the Joint Orientations from Different Depths in Boreholes)

  • 김기석;박영도;박연준
    • 터널과지하공간
    • /
    • 제18권3호
    • /
    • pp.185-193
    • /
    • 2008
  • 이 연구에서는 시추공 분석 작업을 통해 획득된 암반절리 방향성이 심도에 따라 변화하는 양상의 확인을 위해 피어슨 카이제곱 통계검정이 실시되었다. 대상 암반은 모암이 화강암질 편마암인 두 지역으로서, 이와같은 엽리가 발달하지 않은 괴상의 암상 선정은, 엽리가 존재하는 암석의 경우 절리 방향성이 엽리에 의해 영향을 받고 엽리의 방향은 습속 등의 지질작용에 의해 심도에 따라 다를 수가 있기 때문이다. 암반 절리들의 방향 파악을 위해 시추공 영상이 이용되었다. 획득된 방향자료를 천부구간과 심부구간의 자료로 분류한 후 21 영역으로 구성된 분할망에 각각 투영 후, 분류표를 작성하여 통계검정을 실시하였으며, 분석결과 두 지역 중 한 지역의 자료는 비동질로 나타났다. 이러한 결과는 터널과 같은 지하구조물의 설계를 위한 암반공학적으로 중요한 절리면의 방향성에 대한 조사시 원위치 조사가 바람직함을 시사한다.

접착제 접합된 자연섬유강화 복합재료의 파괴 강도특성에 미치는 섬유방향의 영향 (Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joints)

  • 임재규;윤호철;이상용
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.94-96
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tensile and peel tests were carried out on specimen manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the failure strength of adhesive bonded joints using hybrid stacked composites with a polyester and bamboo natural fiber layer adjacent to the fiber orientation. From results, the load directional orientation, small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. and these characters are have a great influence on fracture strength and failure shape of adhesive bonded joints using hybrid stacked composites in the difference of fiber orientation.

  • PDF

액상확산접합한 Ni기 단결정 초내열합금의 고온인장특성 (High Temperature Tensile Property of Transient Liquid Bonded Joints of Ni-base Single Crystal Superalloy)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.106-113
    • /
    • 2000
  • Single crystallization behavior ad high temperature tensile properties of TLP bonded joints of Ni-base single crystal superalloy, CMSX-2 were investigated using MBF-80 and F-24 insert metals. CMSX-2 was bonded at 1523~1548K for 1.5~1.8ks in vacuum. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. Crystallographic orientation analyzed points over the bonded region possessed the almost same orientation across the joint interface and misorientation $\Delta^{\theta}$ was negligibly small in as-bonded and post-bond heat-treated situations. It was confirmed that single crystallization could be readily achieved during TLP bonding. The tensile strengths of all joints at elevated temperatures were equal to or greater than those of base metal the range of testing temperature between 923K and 1173K. The elongation and reduction of area in values were almost the same as those of base metal. SEM observation of the fracture surfaces of joints after tensile test revealed that the fracture surface indicated the similar morphologies each other, and that the fracture of joints occurred in the base metal in any cases.

  • PDF

단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향 (Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향 (Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints)

  • 정의한;김선진
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.

액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성 (Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF

3관절 매니퓰레이터의 일반적 조합에 대한 역기구학적 폐형해 (Closed Form Inverse Kinematic Solutions for General Combination of Three-Joint Manipulator)

  • 한규범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 1995
  • A general method of solving inverse kinematics of three-joint manipulator composed of revolute joints or prismatic joints or combinations of those joints is presented in this study. In completing real-time control, it is very important to obtain the closed form solutions of inverse kinematics rather than iterative numerical solutions, because iterative numerical solutions are generally much slower than the corresponding closed form solutions. If it is possible to obtain the inverse kinematic solutions for general cases of considering twist anlges and offsets, the manipulator work space can be designed and enlarged more effciently for specific task. Moreover, in idustrial manipulators, the effect of main three joints is larger than that of the other three joints related to orientation in the view of work space. Therfore the solutions of manin three-joint are considered. Even The inverse kinematic equations are complicatedly coupled, the systematical solving process by using symbolic calculation is presented.

  • PDF

Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters

  • Nikadat, Nooraddin;Marji, Mohammad Fatehi
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.269-288
    • /
    • 2016
  • The jointed rock mass behavior often plays a major role in the design of underground excavation, and their failures during excavation and in operation, are usually closely related to joints. This research attempts to evaluate the effects of two basic geometric factors influencing tunnel behavior in a jointed rock mass; joints spacing and joints orientation. A hybridized indirect boundary element code known as TFSDDM (Two-dimensional Fictitious Stress Displacement Discontinuity Method) is used to study the stress distribution around the tunnels excavated in jointed rock masses. This numerical analysis revealed that both the dip angle and spacing of joints have important influences on stress distribution on tunnel walls. For example the tensile and compressive tangential stresses at the boundary of the circular tunnel increase by reduction in the joint spacing, and by increase the dip joint angle the tensile stress in the tunnel roof decreases.

2자유도 승마로봇 제어를 위한 동작특성분석 (Motion analysis for control of a 2-DOF horse riding robot)

  • 서동진;전세웅;김영욱;고낙용
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.263-273
    • /
    • 2011
  • This paper analyzes the motion of a horseback riding robot which has two actuators and three joints. It is impossible to control the saddle to get to any position and orientation using the two motors because the robot has less degrees of freedom than the number of joints. Therefore it is required to know the possible location and orientation along with the velocity characteristics of each pose prior to motion planning. For this purpose, this paper analyzes the characteristics of the robot motion. The authors derive the forward and inverse kinematics of the robot motion and developed the trajectory editor for motion planning. Also, Jacobian of the robot is analyzed. It reveals that one of the actuator has little influence to the speed of the saddle motion while the other affects the speed of the saddle motion dominantly. The approach of the paper can be applied for the analysis of characteristics of a robot which has less number of actuators than that of joints.