• 제목/요약/키워드: Organoids

검색결과 54건 처리시간 0.028초

Electro-osmotic pump in osteo-articular tissue engineering: A feasibility study

  • Lemonnier, Sarah;Naili, Salah;Lemaire, Thibault
    • Advances in biomechanics and applications
    • /
    • 제1권4호
    • /
    • pp.227-237
    • /
    • 2014
  • The in vitro construction of osteo-articular large implants combining biomaterials and cells is of great interest since these tissues have limited regeneration capability. But the development of such organoids is particularly challenging, especially in the later time of the culture, when the extracellular matrix has almost filled the initial porous network. The fluid flow needed to efficiently perfuse the sample can then not be achieved using only the hydraulic driving force. In this paper, we investigate the interest of using an electric field to promote mass transport through the scaffold at the late stage of the culture. Based on the resolution of the electrokinetics equations, this study provides an estimation of the necessary electric driving force to reach a sufficient oxygen perfusion through the sample, thus analyzing the feasibility of this concept. The possible consequences of such electric fields on cellular activities are then discussed.

Experimental Models for SARS-CoV-2 Infection

  • Kim, Taewoo;Lee, Jeong Seok;Ju, Young Seok
    • Molecules and Cells
    • /
    • 제44권6호
    • /
    • pp.377-383
    • /
    • 2021
  • Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min;Seung-Woo Cho
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.32-42
    • /
    • 2023
  • Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.

홍삼 사포닌에 의한 유선상피 및 유선암세포의 분화 유도 효과 연구 (Effects of Ginseng Saponins on the Induction of Differentiation in Mammary Epithelial Cells and Mammary tumor Cells)

  • 오미숙;백기주;전성실;김규원;최강주;김남득
    • Journal of Ginseng Research
    • /
    • 제24권4호
    • /
    • pp.188-195
    • /
    • 2000
  • 정상 흰쥐 유선상피세포 및 DMBA로 유도안 흰쥐 유선암세포를 in vitro 상태에서 배양시키며 이들의 성장과 증식에 대한 홍삼 사포닌(조사포닌, 총사포닌, Rbl, Rb2, Rc, Rd, Re, Rhl, Rtl2)의 영향을 관찰하였다. 홍삼 사포닌들의 세포 배양중 발생하는 4종의 세포집락의 형태(cobble stone, spindle, honey comb, senescence)에 영향을 미쳤다. 배양한 세포집락에 lucifer yellow용액을 이용하여 SLDT결과 홍삼 사포닌을 첨가하고 배양한 세포군에서 배양 2주째 세포 간극을 통한 세포간 정보전달체계가 양성을 나타내었다. 이것으로 홍삼사포닌이 분화가 덜된 상피 간세포의 분화를 촉진시켜 분화의 지표 중 하나인 세포체포신호전달을 유도한 것으로 사료된다. 그리고 정상 유선 및 유선암 미세절편들을 Matrigel에 배양한 결과 분화의 종 지표인 수종의 다세포구조물이 생성됨을 확인하였는데 정상 조직과 유선암세포로부터 생성된 구조물 ductal, webbed, stellate, squamous colony들of 생성되었는데 유선암세포로부터는 alveloar unit, foamy alveolar nit, squmaous, lobule-ductal, stellate, webbed colony들이 생성되어 다소 상이함을 확인하였다. 그러나 홍삼사포닌을 첨가하여 배양하였을 때 수종의 다세포 구조물 발생 빈도가 변하는 것으로 미루어 보아 홍삼 사포닌이 이들 다세포 구조물의 발생에도 영향을 미치는 것으로 생각된다. 편평상피암의 전암병소라 일컬어지는 편평상피화생의 경우홍삼 사포닌의 존재 하에 이들의 생성이 억제되고 분화가된 ductal colony들의 수가 증가된 것으로 보아 암예방 효과의 기전을 이해하는데 중요한 단서를 제공할 것으로 사료된다.

  • PDF

암 미세환경 생체 인쇄의 현재와 미래 (The Present and Future of the Cancer Microenvironment Bioprinting)

  • 조민지;지병훈;김명주;황영미;장인호
    • 대한비뇨기종양학회지
    • /
    • 제15권3호
    • /
    • pp.103-110
    • /
    • 2017
  • Cancer is the tissue complex consisted with heterogeneous cellular compositions, and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions as well as cell-extracellular matrix play major roles. Conventional cancer models both 2-dimensional and 3-dimensional (3D) present numerous limitations, which restrict their use as biomimetic models for drug screening and fundamental cancer biology studies. Recently, bioprinting biofabrication platform enables the creation of high-resolution 3D structures. Moreover this platform has been extensively used to model multiple organs and diseases, and this versatile technique has further found its creation of accurate models that figure out the complexity of the cancer microenvironment. In this review we will focus on cancer biology and limitations with current cancer models and we discuss vascular structures bioprinting that are critical to the construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinting cancer models and propose future perspectives.

Clinical Implementation of Precision Medicine in Gastric Cancer

  • Jeon, Jaewook;Cheong, Jae-Ho
    • Journal of Gastric Cancer
    • /
    • 제19권3호
    • /
    • pp.235-253
    • /
    • 2019
  • Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.

Increased SOX2 expression in three-dimensional sphere culture of dental pulp stem cells

  • Seo, Eun Jin;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.197-203
    • /
    • 2020
  • Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to two-dimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics of dental pulp stem cells.

세포외 기질 세포 배양법에 의한 유선상피세포의 성장 및 분화 유도 (Growth and Differentiation of Mammary Epithelial Cells in Extracellular Maxtrix Culture)

  • 백기주;윤정현;김동염;전성실;양한석;김남득
    • 생명과학회지
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 1995
  • Mammary orgamoids(ductal and endbud fragments) were cultured in a complete hormone medium(CHM) with 10%FBS, estradiol, progesterone, hydrocortisone, insulin, and prolactin, Several types of colonies were observed: stellate(14$$\pm$5.5%), duct(41$\pm$5.6%), web(35$\pm$3.6%), squamous(6$\pm$2.1%), and lobuloduct(4$\pm$1.2%), Squamous colony was typical squamous metaplasia(SM) with several layers of squamous epithlia and keratin pearls. At the immunocytochemical study, casein proteins were predominantly localized near the apical surfaces of the cells or in the lumina of ductal or lobuloductal colonies. To inhibit the formation of SM, we treated organoids with all-trans retinoic acid(RA) from 10$^{-6}$ to 10$^{-17}$ M in CHM. Formation of SN was completely inhibited at 10$^{-9}$M RA in CHM. The frequency of lobuloductal colony formation was increased with the augmentation of RA concentration.

  • PDF

Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects

  • Boyoung Kim;Jiyoon Kim;Soah Lee
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.38-50
    • /
    • 2024
  • Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.

Growth and Differentation of Rat Mammary Epithelial Cells Cultured in Serum-free Medium

  • Kim, Dong-Yeum;Jhun, Byung-Hak;Lee, Kyung-Hee;Hong, Seung-Chul;Clifton, Kelly-H.;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • 제20권4호
    • /
    • pp.297-305
    • /
    • 1997
  • A new serum-free defined medium was developed that supports the growth of normal rat mammary epithelial cells. Mammary organoids from the glands of female F344 rats were cultured in a serum-free medium. Monolayer culture colonies developed within a week and remained viable for months in culture. Upon subculture of one-week-old primary colonies, almost the same morphology of colonies was developed. The scrape loading/dye transfer technique showed that most of colonies that developed in a serum-free medium containing EGF, human transferrin, insulin, and hydrocortisone (basal serum-free medium, BSFM) failed to show cell-cell communication. However, colonies cultured in BSFM supplemented with prolactin, $E_2$, and progesterone (complete hormone serum-free medium, CHSFM) showed cell-cell communication at 14 days of primary culture or of subculture. By flow cytometry with FITCPNA and PE-anti-Thy-1.1 monoclonal antibody, we distinguished four RMEC subpopulations in cultures in both media: Thy-1.1+ cells, PNA+ cells, cells negative to both reagents and cells positive to both reagents. It is likely that combined prolactin, cortisol, and insulin in CHSFM stimulate terminal differentiation of clonogenic cells.

  • PDF