• Title/Summary/Keyword: Organizational Efficiency

Search Result 362, Processing Time 0.018 seconds

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions (재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响))

  • Noh, Jeon-Pyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.32-43
    • /
    • 2009
  • Trust has been studied extensively in psychology, economics, and sociology, and its importance has been emphasized not only in marketing, but also in business disciplines in general. Unlike past relationships between suppliers and buyers, which take considerable advantage of private networks and may involve unethical business practices, partnerships between suppliers and buyers are at the core of success for industrial marketing amid intense global competition in the 21st century. A high level of mutual cooperation occurs through an exchange relationship based on trust, which brings long-term benefits, competitive enhancements, and transaction cost reductions, among other benefits, for both buyers and suppliers. In spite of the important role of trust, existing studies in buy-supply situations overlook the role of trust and do not systematically analyze the effect of trust on relational performance. Consequently, an in-depth study that determines the relation of trust to the relational performance between buyers and suppliers of business services is absolutely needed. Business services in this study, which include those supporting the manufacturing industry, are drawing attention as the economic growth engine for the next generation. The Korean government has selected business services as a strategic area for the development of manufacturing sectors. Since the demands for opening business services markets are becoming fiercer, the competitiveness of the business service industry must be promoted now more than ever. The purpose of this study is to investigate the effect of the mutual trust between buyers and suppliers on relational performance. Specifically, this study proposed a theoretical model of trust-relational performance in the transactions of business services and empirically tested the hypotheses delineated from the framework. The study suggests strategic implications based on research findings. Empirical data were collected via multiple methods, including via telephone, mail, and in-person interviews. Sample companies were knowledge-based companies supplying and purchasing business services in Korea. The present study collected data on a dyadic basis. Each pair of sample companies includes a buying company and its corresponding supplying company. Mutual trust was traced for each pair of companies. This study proposes a model of trust-relational performance of buying-supplying for business services. The model consists of trust and its antecedents and consequences. The trust of buyers is classified into trust toward the supplying company and trust toward salespersons. Viewing trust both at the individual level and the organizational level is based on the research of Doney and Cannon (1997). Normally, buyers are the subject of trust, but this study supposes that suppliers are the subjects. Hence, it uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers, like buyers, are the subject of trust since transactions are normally bilateral. From this point of view, suppliers' trust in buyers is as important as buyers' trust in suppliers. The suppliers' trust is influenced by the extent to which it trusts the buying companies and the buyers. This classification of trust using an individual level and an organization level is based on the suggestion of Doney and Cannon (1997). Trust affects the process of supplier selection, which works in a bilateral manner. Suppliers are actively involved in the supplier selection process, working very closely with buyers. In addition, the process is affected by the extent to which each party trusts its partners. The selection process consists of certain steps: recognition, information search, supplier selection, and performance evaluation. As a result of the process, both buyers and suppliers evaluate the performance and take corrective actions on the basis of such outcomes as tangible, intangible, and/or side effects. The measurement of trust used for the present study was developed on the basis of the studies of Mayer, Davis and Schoorman (1995) and Mayer and Davis (1999). Based on their recommendations, the three dimensions of trust used for the study include ability, benevolence, and integrity. The original questions were adjusted to the context of the transactions of business services. For example, a question such as "He/she has professional capabilities" has been changed to "The salesperson showed professional capabilities while we talked about our products." The measurement used for this study differs from those used in previous studies (Rotter 1967; Sullivan and Peterson 1982; Dwyer and Oh 1987). The measurements of the antecedents and consequences of trust used for this study were developed on the basis of Doney and Cannon (1997). The original questions were adjusted to the context of transactions in business services. In particular, questions were developed for both buyers and suppliers to address the following factors: reputation (integrity, customer care, good-will), market standing (company size, market share, positioning in the industry), willingness to customize (product, process, delivery), information sharing (proprietary information, private information), willingness to maintain relationships, perceived professionalism, authority empowerment, buyer-seller similarity, and contact frequency. As a consequential variable of trust, relational performance was measured. Relational performance is classified into tangible effects, intangible effects, and side effects. Tangible effects include financial performance; intangible effects include improvements in relations, network developing, and internal employee satisfaction; side effects include those not included either in the tangible or intangible effects. Three hundred fifty pairs of companies were contacted, and one hundred five pairs of companies responded. After deleting five company pairs because of incomplete responses, one hundred five pairs of companies were used for data analysis. The response ratio of the companies used for data analysis is 30% (105/350), which is above the average response ratio in industrial marketing research. As for the characteristics of the respondent companies, the majority of the companies operate service businesses for both buyers (85.4%) and suppliers (81.8%). The majority of buyers (76%) deal with consumer goods, while the majority of suppliers (70%) deal with industrial goods. This may imply that buyers process the incoming material, parts, and components to produce the finished consumer goods. As indicated by their report of the length of acquaintance with their partners, suppliers appear to have longer business relationships than do buyers. Hypothesis 1 tested the effects of buyer-supplier characteristics on trust. The salesperson's professionalism (t=2.070, p<0.05) and authority empowerment (t=2.328, p<0.05) positively affected buyers' trust toward suppliers. On the other hand, authority empowerment (t=2.192, p<0.05) positively affected supplier trust toward buyers. For both buyers and suppliers, the degree of authority empowerment plays a crucial role in the maintenance of their trust in each other. Hypothesis 2 tested the effects of buyerseller relational characteristics on trust. Buyers tend to trust suppliers, as suppliers make every effort to contact buyers (t=2.212, p<0.05). This tendency has also been shown to be much stronger for suppliers (t=2.591, p<0.01). On the other hand suppliers trust buyers because suppliers perceive buyers as being similar to themselves (t=2.702, p<0.01). This finding confirmed the results of Crosby, Evans, and Cowles (1990), which reported that suppliers and buyers build relationships through regular meetings, either for business or personal matters. Hypothesis 3 tested the effects of trust on perceived risk. It has been found that for both suppliers and buyers the lower is the trust, the higher is the perceived risk (t=-6.621, p<0.01 for buyers; t=-2.437, p<0.05). Interestingly, this tendency has been shown to be much stronger for buyers than for suppliers. One possible explanation for this higher level of perceived risk is that buyers normally perceive higher risks than do suppliers in transactions involving business services. For this reason, it is necessary for suppliers to implement risk reduction strategies for buyers. Hypothesis 4 tested the effects of trust on information searching. It has been found that for both suppliers and buyers, contrary to expectation, trust depends on their partner's reputation (t=2.929, p<0.01 for buyers; t=2.711, p<0.05 for suppliers). This finding shows that suppliers with good reputations tend to be trusted. Prior experience did not show any significant relationship with trust for either buyers or suppliers. Hypothesis 5 tested the effects of trust on supplier/buyer selection. Unlike buyers, suppliers tend to trust buyers when they think that previous transactions with buyers were important (t=2.913 p<0.01). However, this study did not show any significant relationship between source loyalty and the trust of buyers in suppliers. Hypothesis 6 tested the effects of trust on relational performances. For buyers and suppliers, financial performance reportedly improved when they trusted their partners (t=2.301, p<0.05 for buyers; t=3.692, p<0.01 for suppliers). It is interesting that this tendency was much stronger for suppliers than it was for buyers. Similarly, competitiveness was reported to improve when buyers and suppliers trusted their partners (t=3.563, p<0.01 for buyers; t=3.042, p<0.01 for suppliers). For suppliers, efficiency and productivity were reportedly improved when they trusted buyers (t=2.673, p<0.01). Other performance indices showed insignificant relationships with trust. The findings of this study have some strategic implications. First and most importantly, trust-based transactions are beneficial for both suppliers and buyers. As verified in the study, financial performance can be improved through efforts to build and maintain mutual trust. Similarly, competitiveness can be increased through the same kinds of effort. Second, trust-based transactions can facilitate the reduction of perceived risks inherent in the purchasing situation. This finding has implications for both suppliers and buyers. It is generally believed that buyers perceive higher risks in a highly involved purchasing situation. To reduce risks, previous studies have recommended that suppliers devise risk-reducing tactics. Moving beyond these recommendations, the present study uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers are also susceptible to perceived risks, especially when they supply services that require very technical and sophisticated manipulations and maintenance. Consequently, buyers and suppliers must solve problems together in close collaboration. Hence, mutual trust plays a crucial role in the problem-solving process. Third, as found in this study, the more authority a salesperson has, the more he or she can be trusted. This finding is very important with regard to tactics. Building trust is a long-term assignment; however, when mutual trust has not been developed, suppliers can overcome the problems they encounter by empowering a salesperson with the authority to make certain decisions. This finding applies to suppliers as well.

  • PDF