• Title/Summary/Keyword: Organics Removal Rates

Search Result 26, Processing Time 0.025 seconds

Characteristics and Biological Kinetics of Nitrogen Removal in Wastewater using Anoxic-RBC Process (무산소-RBC 공정을 이용한 질소제거 특성 및 동력학적 인자 도출)

  • 최명섭;손인식
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1085-1093
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC (rotating biological contactor) and its application in advanced municipal wastewater treatment process to remove biologically organics and ammonia nitrogen. Effluent COD and nitrogen concentration increased as the increase of volumetric loading rate. But, the concentration changes of NO$_2$$\^$-/ -N and NO$_3$$\^$-/ -N were little, as compared to COD and NH$_4$$\^$+/ -N. When the volumetric loading rate increased, COD removal efficiency and nitrification appeared very high as 96.7∼98.8% and 92.5∼98.8%, respectively. However, denitrification rate decreased to 76.2∼88.0%. These results showed that the change of volumetric loading rate affected to the denitrification rate more than COD removal efficiency or nitrification rate. The surface loading rates applied to RBC were 0.13~6.0lg COD/㎡-day and 0.312∼1.677g NH$_4$$\^$+/-N㎡-day and they were increased as the increase of volumetric loading rate. However, the nitrification rate showed higher than 90%. The thickness of the biofilm in RBC was 0.130 ∼0.141mm and the density of biofilm was 79.62∼83.78mg/㎤. They were increased as surface loading rate increased. From batch kinetic tests, the k$\_$maxH/ and k$\_$maxN/ were obtained as 1.586 g C/g VSS-day, and 0.276 g N/g VSS-day, respectively. Kinetic constants of denitrifer in anoxic reactor, Y, k$\_$e/, K$\_$s/, and k were 0.678 mg VSS/mg N, 0.0032 day$\^$-1/, 29.0 mg N/l , and 0.108 day$\^$-l/, respectively. P and K$\_$s/, values of nitrification and organics removal in RBC were 0.556 g N/㎡-day and 18.71 g COD/㎡-day, respectively.

A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters

  • Chatterjee, Jaideep;A, Shajahan;Pratap, Shailendra;Gupta, Santosh Kumar
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.35-51
    • /
    • 2017
  • The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an "adsorptive" filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an "intermittent" manner over extended time, to "simulate" performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel "deposition" and "detachment" rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model "parameters", namely the "deposition" and "detachment" rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the "deposition" rates are higher for GAC, the "detachment" rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.

Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal (생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF

Reduction of Suspended Solids in First Flush from a Building Rooftop using Various Media (여과재를 활용한 건물옥상유출 초기빗물의 부유물질 저감)

  • Kim, Seongbeom;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.214-219
    • /
    • 2017
  • We analyzed the water quality of first flush and rainfall runoff from a building rooftop, and investigated the removal of suspended solids (SS) in first flush using various media to develop a first flush filtration system. Particle size distribution exhibited most of particles in first flush from the rooftop ranged from 10 to 30 ${\mu}m$. SS concentrations maxed in 10~20 min and decreased afterwards. Dissolved organics and inorganic materials in runoff also showed highest levels in first flush (10 min). Filtration tests using anthracite (AC), polyurethane (PU), polypropylene (PP) showed about 50% of SS removal during the first 10 min operation, but the removal rates dramatically decreased after 20 min of filtration. Based upon the results from rinse and run cycle tests, only AC could achieve nice cycles without distinct decease of SS removal. SS removal rates increased with higher depth of media bed and lower flowrate. The system achieved over 50% of SS removal with a media depth of 30 cm and flowrate < 12 L/min.

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

TCE제거를 위한 반응층과 고정화층의 결합 실험

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.67-70
    • /
    • 2002
  • Remediation of groundwater contaminated with chlorinated organics, nitro aromatics, and heavy metals using zero valent iron (ZVI) filings has paid considerable attention in recent years. When the contaminants of high concentration leaked abundantly in subsurface environment, permeable reactive barrier technology using iron filing is taken a long time for the remediation of contaminated groundwater, The problem of contaminant shock is able to be solved using surfactant (hexadecyltrimethylammonium, HDTMA) modified bentonite (SMB) as immobilizing material. Therefore, the purpose of this research was to develop the combined remediation technology using conventional permeable reactive and immobilizing barrier for the enhanced decontamination of chlorinated compounds. Four column experiments were conducted to assess the performance of the mixed reactive materials with Ottawa sand, iron filing, and HDTMA-bentonite for trichloroethylene (TCE) removal under controlled groundwater flow conditions. TCE reduction rates with sand/iron filing/HDTMA-bentonite were highest among four column due to dechlorination of TCE by iron filing and sorption of TCE by SMB.

  • PDF

Bioreduction Characteristics of Perchlorate in Raw Sewage (생하수의 퍼클로레이트 생분해 특성)

  • Hong, Seong Hwan;Choi, Hyeoksun
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • This research was done to investigate the bioreduction characteristics of perchlorate in raw sewage because sewage contains biodegradable organics and various microorganisms for biological perchlorate reduction. Two different types of sewage were tested for biological perchlorate reduction in the flasks. Sewage A was collected from the screening equipment and sewage B was collected from the primary settlement in the municipal wastewater treatment facilities. Perchlorate was completely reduced within 72hours from 8.2 and 10.4 mg/L in the sewage A and sewage B flask tests. When perchlorate and nitrate were added in sewage A, both perchlorate and nitrate were reduced. However, perchlorate and nitrate removal rates were 9.3% and 64.0% at 72hours in sewage B. Perchlorate reduction was significantly inhibited by high salinity(0.5% NaCl) in the sewage A and B. These results showed the sewage has potential for the biological perchlorate reduction in the sewage pipe.

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.

Characteristics of Organics Treatment Using White-rot Fungus Biofilm of Atmospheric Exposed Type (대기노출형 백색부후균 생물막을 이용한 유기물 처리특성)

  • Lee, Soon-Young;Kang, Ki-Cheol;Won, Chan-Hi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.491-499
    • /
    • 2008
  • It is really urgent to develop wastewater treatment system which is economically efficient, occupies small area for buildup, can be easily operated, discharges small amount of sludge due to the more strict water quality standard, the expensive water and energy cost and so on. This study on treatment of wastewater including nonbiodegadable materials using white-rot fungus biofilm were designed to investigate the submerged type of biofilm, hydraulic retention times, recycle rates, and module turning times. Removal efficiencies of fully exposed biofilm type in atmosphere are similar to submerged biofilm of aeration type. The optimum conditions of white-rot fungus biofilm of fully exposed type in atmosphere are HRT 3$\sim$4 hr, recycle rate 6$\sim$10 Q, module turning times 0.5$\sim$2 times/min. At this time, removal efficiencies of organics were COD$_{Cr}$ 65.0$\sim$69.9%, NBDCOD 70.4$\sim$72.7%, BOD$_5$ 88.8$\sim$90.1%, SS 84.2$\sim$90.4%. Moreover average effluent concentration of BOD$_5$(8.9 mg/L) satisfied water quality standard of heavy water(BOD$_5$ less than 10 mg/L) but concentration of NBDCOD(29.6 mg/L) was higher than water quality standard of heavy water(NBDCOD less than 20 mg/L).

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.