• Title/Summary/Keyword: Organic-Inorganic

Search Result 2,068, Processing Time 0.038 seconds

Study on permeability improved multi-layer encapsulation on Ethylene Terephthalate(PET) (PET 기판위의 투습율 향상을 위한 다층 보호막에 관한 연구)

  • Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Kang, Dong-Hun;Han, Jung-Min;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.313-314
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated Results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) application.

  • PDF

Development of Organic-Inorganic Hybrid Dielectric for Organic Thin Film Transistors

  • Jeong, Sun-Ho;Kim, Dong-Jo;Lee, Sul;Park, Bong-Kyun;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1115-1118
    • /
    • 2006
  • Using a thermally-crosslinkable organosiloxane-based organic-inorganic hybrid material, solution processable gate dielectric layer for organic thin-film transistors (OTFTs) have been fabricated. The hybrid dielectrics are synthesized by the sol-gel process, followed by the heat-treatment at $190{\bullet}\;.{\bullet}$ To investigate the electrical property of hybrid dielectric, leakage current behavior and capacitance were measured. To fabricate coplanar-type OTFTs, Au/Cr electrode was deposited onto the heavily doped silicon substrate with the organic-inorganic hybrid dielectric layer and then ${\alpha},{\omega}-dihexylquaterthiophene$ was drop-cast between source and drain electrical performance of the fabricated transistor.

  • PDF

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • Ga, Jae-Won;Jang, Gwang-Seok;Lee, Mi-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

Effects of Dietary Supplemented Inorganic and Organic Selenium on Antioxidant Defense Systems in the Intestine, Serum, Liver and Muscle of Korean Native Goats

  • Chung, J.Y.;Kim, J.H.;Ko, Y.H.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • The present study was designed to assess whether dietary inorganic and organic selenium (Se) could affect antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the intestine, serum, liver, and gastrocnemius muscle of Korean native goats. A total of eighteen Korean native goats was allotted into three dietary groups, consisting of basal diet (CON), or basal diet with either 0.25 ppm inorganic (IOSEL) or 0.25 ppm organic Se (ORSEL), and fed the corresponding diets for 5 wks. Growth performance, including body weight and total gain, and blood biochemical profiles, including GSH-Px, were not significantly different between the three dietary groups. Also, the specific activities of SOD, GSH-Px, and GST, and the level of MDA in the intestinal mucosa and liver from goats were not substantially affected by either inorganic Se or organic Se. However, goats fed the diet containing organic Se showed a significant increase in GSH-Px and GST activities in the gastrocnemius muscle compared with those fed the basal diet. In conclusion, increased muscle GSH-Px and GST activities suggest that dietary organic Se may affect, at least in part, the antioxidant defense system in muscle of Korean native goats under the conditions of our feeding regimen.

Improvement of Electrical and Mechanical Characteristics of Organic Thin Film Transistor with Organic/Inorganic Laminated Gate Dielectric (유연성 유기 박막트랜지스터 적용을 위한 다층 게이트 절연막의 전기적 및 기계적 특성 향상 연구)

  • Noh, H.Y.;Seol, Y.G.;Kim, S.I.;Lee, N.E.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, improvement of mechanical and electrical properties of gate dielectric layer for flexible organic thin film transistor (OTFT) devices was investigated. In order to increase the mechanical flexibility of PVP (poly(4-vinyl phenol) organic gate dielectric, a very thin inorganic $HfO_2$ layers with the thickness of $5{\sim}20nm$ was inserted in between the spin-coated PVP layers. Insertion of the inorganic $HfO_2$ in the laminated organic/inorganic structure of PVP/$HfO_2$/PVP layer led to a dramatic reduction in the leakage current compared to the pure PVP layer. Under repetitive cyclic bending, the leakage current density of the laminated PVP/$HfO_2$/PVP layer with the thickness of 20-nm $HfO_2$ layer was not changed, while that of the single PVP layer was increased significantly. Mechanical flexibility tests of the OTFT devices by cyclic bending with 5 mm bending radius indicated that the leakage current of the laminated PVP/$HfO_2$(20 nm)/PVP gate dielectric in the device structure was also much smaller than that of the single PVP layer.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Performance Evaluation of Organic-Inorganic Adhesives and Organic Adhesives for Polishing Tile Adhesion (폴리싱 타일 접착용 유·무기계 접착제와 유기계 접착제의 성능 평가)

  • Seo, Jong-Oh;Jeon, Jin-Ho;Park, Chang-Hwan;Cho, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.211-212
    • /
    • 2023
  • Polishing tiles among porcelain tiles are more durable and aesthetic than ceramic tiles, so their demand has recently increased. In particular, since polishing tiles have a very low absorption rate, organic adhesives with chemical bonds are mainly used. However, organic adhesives have low economic efficiency and some volatile organic compounds (TVOCs). Therefore purpose of this study was to evaluate the performance of polishing tile adhesion by developing organic-inorganic adhesives, which have chemical bonds and mechanical bonds. As a result, since the amorphous chain and chemical bonds of the polymer in the tile adhesives, both tensile and shear adhesion strength were satisfied with the KS L 1592, KS L 1593, and the rate of length change itself in the thermal cycling was lower than organic adhesives. So it is thought that it is possible to replace some organic adhesives.

  • PDF

A Study on the Guide Line of Quality of Waterproofing Admixture of Powder Type for Concrete (콘크리트 혼입용 분말형 구체방수재의 품질기준에 관한 연구)

  • 우영제;배기선;오상근;김형무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.967-974
    • /
    • 2000
  • By testing compressive strength, water absorption and water premeablity, to establish the standard of quality of waterproofing admixture of power type for concrete, we propose guide line as following ; $.$Setting time: more than 1 hour, within 10 hours $.$Slump: To be satisfied with request of user $.$Air content: To be satisfied with request of user $.$Safety: Without crack or deformation $.$Ratio of compressive strength: $\circled1$ At 3 days : more than plain specimen by 0.9 (An inorganic material) more than plain specimen by 0.4 (An inorganic material mixed organic) $\circled2$ At 7, 28 days : more than plain specimen by 1.0 $.$Ratio of water absorption Coefficient: $\circled1$An inorganic material: less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8 $.$Ratio of water premeablity : $\circled1$ An inorganic material : less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

  • Jo, Du-Hwan;Kwon, Moonjae;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances.