• Title/Summary/Keyword: Organic-Inorganic

Search Result 2,057, Processing Time 0.03 seconds

Characteristies of the background fabric and coloring of "Buseoksa Temple Gwaebul" in the possession of the National museum of Korea (국립중앙박물관 소장 <부석사 괘불>의 바탕직물과 채색 특성)

  • Park Seungwon;Yu Heisun;Park Jinho;Cheon Juhyun
    • Conservation Science in Museum
    • /
    • v.31
    • /
    • pp.1-20
    • /
    • 2024
  • The "Buseoksa Temple Gwaebul" (1684, K969) in the possession of the National Museum of Korea is a large Buddhist hanging scroll produced for outdoor rituals (gwaebul) at the eponymous temple. The painting demonstrates the most complex composition among the existing Buddhist hanging scrolls as it depicts the Shakyamuni Buddha in the lower middle, surrounded by the Vairocana Buddha, Medicine Buddha, and Amitabha Buddha. This study examines the characteristics of the background fabric and the production methods of the scroll from Buseoksa Temple and explores the characteristics of the coloring techniques by integrating the results of a non-destructive analysis to determine the materials used for coloring. The gwaebul comprises a total of 13 panels, with 11 panels arranged side by side and one panel each added to the top and bottom. The background fabric of the painting consist of semi-transparent silk tabby for the nine panels in the center, and silk tabby for the four panels surrounding the four sides. The coloring materials used to paint the scroll were analyzed using X-ray fluorescence, and were confirmed to be inorganic pigments of red, yellow, green, blue, and white. For some parts painted in yellow and blue, the colors were expressed by first applying light white pigment before adding organic pigments. In addition, ink was used for the black lines and gold leaf was used for the patterns of the Buddhist robes. X-ray irradiation enabled the determination of the location and technique of coloring according to each pigment color by highlighting the difference in brightness depending on the main component and the thickness of each pigment.

Chemistry of mist deposition of organic polymer PEDOT:PSS on crystalline Si

  • Shirai, Hajime;Ohki, Tatsuya;Liu, Qiming;Ichikawa, Koki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.388-388
    • /
    • 2016
  • Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated with cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature $T_s$, and substrate dc bias $V_s$ as variables for efficient PEDOT:PSS/crystalline (c-)Si heterojunction solar cells (Fig. 1). The high-speed camera and differential mobility analysis characterizations revealed that average size and flux of PEDOT:PSS mist depend on f, solvent, and $V_s$. The size distribution of mist particles including EG/DI water cosolvent is also shown at three different $V_s$ of 0, 1.5, and 5 kV for a f of 3 MHz (Fig. 2). The size distribution of EG/DI water mist without PEDOT:PSS is also shown at the bottom. A peak maximum shifted from 300-350 to 20-30 nm with a narrow band width of ~150 nm for PEDOT:PSS solution, whose maximum number density increased significantly up to 8000/cc with increasing $V_s$. On the other hand, for EG/water cosolvent mist alone, the peak maximum was observed at a 72.3 nm with a number density of ~700/cc and a band width of ~160 nm and it decreased markedly with increasing $V_s$. These findings were not observed for PEDOT:PSS/EG/DI water mist. In addition, the Mie scattering image of PEDOT:PSS mist under white bias light was not observed at $V_s$ above 5 kV, because the average size of mist became smaller. These results imply that most of solvent is solvated in PEDOT:PSS molecule and/or solvent is vaporized. Thus, higher f and $V_s$ generate preferentially fine mist particle with a narrower band width. Film deposition occurred when $V_s$ was impressed on positive to a c-Si substrate at a Ts of $30-40^{\circ}C$, whereas no deposition of films occurred on negative, implying that negatively charged mist mainly provide the film deposition. The uniform deposition of PEDOT:PSS films occurred on textured c-Si(100) substrate by adjusting $T_s$ and $V_s$. The adhesion of CMD PEDOT:PSS to c-Si enhanced by $V_s$ conspicuously compared to that of spin-coated film. The CMD PEDOT:PSS/c-Si solar cell devices on textured c-Si(100) exhibited a ${\eta}$ of 11.0% with the better uniformity of the solar cell parameters. Furthermore, ${\eta}$ increased to 12.5% with a $J_{sc}$ of $35.6mA/cm^2$, a $V_{oc}$ of 0.53 V, and a FF of 0.67 with an antireflection (AR) coating layer of 20-nm-thick CMD molybdenum oxide $MoO_x$ (n= 2.1) using negatively charged mist of 0.1 wt% 12 Molybdo (VI) phosphoric acid n-Hydrate) $H_3(PMo_{12}O_40){\cdot}nH_2O$ in methanol. CMD. These findings suggest that the CMD with negatively charged mist has a great potential for the uniform deposition of organic and inorganic on textured c-Si substrate by adjusting $T_s$ and $V_s$.

  • PDF

Reduction of Carbon Dioxide and Nitrous Oxide Emissions through Various Biochars Application in the Upland (밭 토양에서 다양한 바이오차 시용에 따른 이산화탄소 및 아산화질소 감축효과)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jung, Hyun-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2018
  • Biochar is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after various biochars addition. The biochars were produced by pyrolysing pear branch, rice hull and bean straw at $400{\sim}500^{\circ}C$. The treatments were consisted of a control without input of biochar and three type biochars input as 5.0 Mg/ha. Emissions of $CO_2$ and $N_2O$ from upland soil were determined using closed chamber for 8 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were 207.1 to $255.2g\;CO_2/m^2$ for biochar input treatments and $258.6g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was slightly decreased in biochar input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $2,890.6mg\;N_2O/m^2$ for control, 379.7 to $525.2mg\;N_2O/m^2$ for biochar input treatment at the end of experiment. All biochar treatments were found to significantly reduce $N_2O$ emission by 82~87%. Consequently the biochar from byproducts such as pear branch, rice hull and bean straw could suppress the soil $N_2O$ emission. The results from the study imply that biochar can be utilized to reduce greenhouse gas emission from the upland field.

New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields (볏짚 시용에 따른 벼 재배 논에서의 메탄 배출계수 개발에 관한 연구)

  • Ju, Okjung;Won, Tae-Jin;Cho, Kwang-Rae;Choi, Byoung-Rourl;Seo, Jae-Sun;Park, In-Tae;Kim, Gun-Yeob
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • BACKGROUND: Accurate estimates of total direct $CH_4$ emissions from croplands on a country scale are important for global budgets of anthropogenic sources of $CH_4$ emissions and for the development of effective mitigation strategies. Methane production resulted by the anaerobic decomposition of organic compounds where $CO_2$ acts as inorganic electron acceptor. This process could be affected by the addition of rice straw, water management and rice variety itself. METHODS AND RESULTS: Rice (Oryza sativa L. Japonica type, var Samkwangbyeo) was cultivated in four plots: (1) Nitrogen-Phosphorus-Potassium (NPK) ($N-P_2O_5-K_2O$:90-45-57 kg/ha); (2) NPK plus 3 Mg/ha rice straw (RS3); (3) NPK plus 5 Mg/ha rice straw (RS5); (4) NPK plus 7 Mg/ha rice straw (RS7) for 3 years (2010-2012) and the rice straw incorporated in fall (Nov.) in Gyeonggi-do Hwaseong-si. Gas samples were collected using the closed static chamber which were installed in each treated plot of $152.9m^2$. According to application of 3, 5, 7 Mg/ha of rice straw, methane emission increased by 46, 101, 190%, respectively, compared to that of the NPK plot. CONCLUSION(S): We obtained a quantitative relationship between $CH_4$ emission and the amount of rice straw applied from rice fields which could be described by polynomial regression of order 2. The emission scaling factor estimated by the relationship were in the range of IPCC GPG (2000).

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Review of the developmental trend of implant surface modification using organic biomaterials (생체활성 유기물로 표면이 개질된 임플란트 개발 추이 분석 연구)

  • Hwang, Sung-Taek;Han, In-Ho;Huh, Jung-Bo;Kang, Jeong-Kyung;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.254-262
    • /
    • 2011
  • Purpose: This study aims to evaluate and prospect for current research trend and developmental perspectives via analyzing recent biomaterial coated-implants study. Materials and methods: To investigate each subject respectively, several biomaterials that are using for implant surface coating were set as 'keywords'. By these keywords, major research groups in each subject were chosen, and research trend of them was analyzed. Trend of In vivo studies that examined selected biomaterials were analyzed to evaluate commercial potential. Results: The collagen research accounted for 40% of total implant study, which was the highest, and fibronectin, BMPs (bone morphogenetic proteins) and RGD (Arg-Gly-Asp) peptides followed, which were ranked in descending order. Furthermore, figures of all four research subjects were also increased with time, especially a sharp increase in RGD research. According to the results of major research group, collagen that was combined with other organic and inorganic biomaterials was mostly examined, rather than using collagen only. Major research groups investigating BMPs mostly focused on rhBMP-2. In animal studies, collagen was used as resorbable membrane in guided bone regeneration (GBR) or drug carrier, while BMPs were used with bone graft materials or coating material for titanium implant surface. Conclusion: There is not consistency of results even in identical subjects research field. Many studies are ongoing to optimize combination between mechanical surface treatment and biomaterials such as extracellular matrix component and growth factors.

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

A Study of the Utilization of Feldspathic Sand as a Fortified Functional Filtering Material for Water Purification (고 기능성 수질 정화 여과재로서의 장석질 모래 활용연구)

  • 고상모;송민섭;홍석정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.283-293
    • /
    • 2003
  • Domestic water treatment plants operate the rapid and slow filtering system using the filtering sands. Most of them are composed of beach sands, which have less sorption capacity of heavy metals as well as organic contaminants. Therefore, the development of fortified functional filtering materials with high removal capacity of organic and inorganic contaminants is needed to prevent the unexpected load of contaminated source water. This study aims to test the hydrochemical change and the removing capacity of heavy metals such as Cd, Cu, and Pb on the Jumunjin sand, feldspathic sand(weathering product of Jecheon granite), feldspathic mixing sand I(feldspathic sand mixed with 10 wt% zeolite), and feldspathic mixing sand II (feldspathic sand mixed with 20 wt% zeolite). Feldspathic mixing sand I and II showed the eruption of higher amounts of cations and anions compared with the Jumunjin sand and feldspathic sand. They also showed higher eruption of Si, Ca, $SO_4$ ions than that of Al, $NO_3$, Fe, K, Mg, and P. Feldspathic mixing sand II caused higher eruption of some cations of Na, Ca, Al than feldspathic mixing sud I, which is the result controlled by the dissolution of zeolite. Jumunjin sand and feldspathic sand showed very weak sorption of Cd, Cu and Pb. In contrast to this, feldspathic mixing sand I and II showed the high sorption and removal capacity of the increasing order of Cd, Cu and Pb. Feldspathic mixing sand II including 20% zeolite showed a fortified removal capacity of some heavy metals. Therefore, feldspathic mixing sand mixed with some contents of zeolite could be used as the fortified filtering materials for the water filtering and purification in the domestic water treatment plants.

Effects of Reclaimed Wastewater and Waste Nutrient Solution Irrigation on Seedling Growth of Chinese Cabbage (하수처리수 및 폐양액의 재이용이 배추 유묘 생장에 미치는 영향)

  • Hong, Ki-Chan;Choi, Bong-Su;Lim, Kyoung-Jae;Won, Jae-Hee;Jeon, Shin-Jae;Hur, Seung-Oh;Ha, Sang-Keun;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • Water shortages are expected to be a major impact of climate change. This study examined the growth of Chinese cabbage seedling using reclaimed wastewater and waste nutrient solution as alternative irrigation resources. Generally, the concentration of nutrients, such as $K^+$, $NH_4^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$,$NO_3^-$, $PO_4^-$ and $SO_4^{2-}$, in waste nutrient solution was higher than that in wastewater. However, Chinese cabbage seedling irrigated with wastewater was supplied a higher concentration of $Na^+$ and $Cl^-$ than waste nutrient solution. The growth of Chinese cabbage seedling irrigated with waste nutrient solution was similar or higher than those irrigated with groundwater as control, while the growth of those irrigated with wastewater was similar to those irrigated with groundwater. The total nitrogen uptake in Chinese cabbage seedling irrigated with groundwater, waste nutrient solution from organic and inorganic hydroponic cultures, and wastewater was 5.47, 10.02, 5.20, and 4.59 mg/plant, respectively. The nitrogen uptake of Chinese cabbage seedling irrigated with waste nutrient solution from organic hydroponic substrates in a 50% lower dose than recommended was 8.34 mg/plant, which is higher than that of the cabbage irrigated with groundwater. Overall, the results suggest that waste nutrient solution and wastewater can be used as alternate water resources, and can allow a reduction in the amount of fertilizer needed to raise Chinese cabbage seedling.

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.