• Title/Summary/Keyword: Organic wastewater compounds

Search Result 185, Processing Time 0.025 seconds

Performance of GACC and GACP to treat institutional wastewater: A sustainable technique

  • Khaleel, Mohammed R.;Ahsan, Amimul;Imteaz, M.;El-Sergany, M.M.;Nik Daud, N.N.;Mohamed, T.A.;Ibrahim, Buthainah A.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.339-349
    • /
    • 2015
  • Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques.

Toxic Assessment on Effluents of Argo/Industrial Wastewater Treatment Plants in Jeonnam using Chemical and Biological Method (전남 농공단지 폐수처리장 방류수의 화학적/생물학적 독성평가)

  • Lee, Moon-Hee;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.267-273
    • /
    • 2008
  • The purpose of this study is to investigate the distributive property of organic pollutants in effluents of argo/industrial wastewater treatment plants in Jeonnam using simultaneous analysis method of 310 chemicals. The numerous organic pollutants were detected in four sampling sites and the major chemicals were pesticides, CH type chemicals such as polycyclic compounds, CHO type chemicals such as phthalates, and CHO(N) type chemical such as aromatic amines. Moreover, 17 kinds of endocrine disrupters which include diethylptbalate were detected in each sampling sites. TU (Toxic unit) indicated cytotoxicity of samples using XTT assay, it appeared highly at A point(27.2) and D point(24.4). Also, the results from the correlation between total concentration of pollutants and TU did not correspond to the results of chemical and biological analysis.

  • PDF

Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment (회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發))

  • Kim, Eung Ho;Park, Jae Lo;Yoon, Jung Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment (응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구)

  • Park, Sang-Hyuk;Hong, Jong-Hyun;Yu, Myong-Jin;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.

Effect of Phase Separation on Anaerobic Degradation of Phenol (페놀의 혐기성분해에 대한 상분리의 영향)

  • Park, Ju-Seok;Shin, Hang-Sik;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 1994
  • With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.

  • PDF

Assessment of Advanced Oxidation Processes using Low and Medium-Pressure Lamps with H2O2 for Reclamation of Biologically Treated Wastewater Effluents (하수 2차 처리수 재이용을 위한 저압 및 중압 고도산화시스템의 성능평가)

  • Ahn, Kyu-Hong;An, Seok;Maeng, Seung-Kyu;Kim, Ki-Pal;Hong, Joon-Seok;Jung, Min-Woo;Kweon, Ji-Hyang;Ahmed, Zubair
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.542-549
    • /
    • 2003
  • In the present study, the feasibility of $UV/H_2O_2$ systems was investigated using low and medium-pressure lamps on biologically treated wastewater effluents for secondary effluent reclamation. Two types of UV lamps were used as the light sources (a 39-W low-pressure mercury lamp and a 350-W medium-pressure mercury lamp). The results from these UV systems showed that the removal of organic compounds could be achieved in the contact time of longer than 30min (i.e., low UV doses). Efficiencies of color removal and disinfection were far better than those of organic matters measured as TOC, DOC and $TCOD_{cr}$. In the low-pressure lamp UV system, it has been found that DOC and color removals were 60.9 and 86.2% with 50mg/L of $H_2O_2$ and contact times of 30 minute, respectively. Whereas, with the medium-pressure lamp UV system, TOC, DOC and color removal were 27.1, 5.6 and 95% with 14.3mg/L of $H_2O_2$ and 14 minute of contact times, respectively. Both systems could be applied for the reclamation of secondary effluent treated with biological treatment processes.

Characteristics of Wastewater from the Pulp.Paper Industry and its Biological Treatment Technologies (펄프.제지산업(製紙産業) 폐수(廢水)의 특성(特性)과 생물학적(生物學的) 처리기술(處理技術))

  • Abn, Ji-Whan;Lim, Mi-Hee
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.16-29
    • /
    • 2009
  • This paper describes characteristics of pollutants in wastewater from the pulp and paper industry and biological technologies for the wastewater treatment. The wastewater from the pulp and paper industry contains high concentrations of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) and shows high toxicity and strong black-brown color. In particular, organic chlorinated compounds such as dioxins and furans may be formed by the chlorination of lignin in wood chips. Thus the pulp and paper industry is recently trending toward total chlorine-free (TCF) bleaching processes. All biological technologies for pulp and paper wastewater treatment are based on the contact between wastewater and bacteria, which feed on organic materials in the wastewater, thus they reduce BOD concentration in it. Both aerobic and anaerobic treatments were found to be effective for the wastewater treatment. Furthermore, advanced technologies such as fungal application and combined biological-filtration process have been also introduced to the wastewater treatment field. These technologies would be useful for water recycling to reduce water consumption throughout pulp and paper making process.

Effect of raw water quality decrease on water treatment costs (상수원수 수질저하가 정수처리 비용에 미치는 영향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • In this study, effects of five raw water quality parameters (turbidity, odor compounds caused by algae, filter clogging caused by algae, pH increase caused by algae, and organic matter) on improvements and operations costs of typical water treatment plant (WTP) were estimated. The raw water quality parameters were assumed the worst possible conditions based on the past data and costs were subsequently estimated. Results showed that new water treatment facilities were needed, such as a selective intake system, an advanced water treatment processes, a dual media filter, a carbonation facility, and a re-chlorination facility depending on water quality. Furthermore, changes needed to be made in WTP operations, such as adding powered activated carbon, increasing the injection of chlorine, adding coagulation aid, increasing the discharge of backwashed water, and increasing the operation time of dewatering facilities. Such findings showed that to reliably produce high-quality tap water and reduce water treatment costs, continuous improvements to the quality of water sources are needed.

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.