• 제목/요약/키워드: Organic thiolates

검색결과 2건 처리시간 0.015초

Reactivity of [Pt(dppf)Cl2] toward Simple Organic Thiolates: Preparation and Structure of [Pt(dppf)(SPh)2], [Pt(dppf)(S-n-Pr)2], and [Pt(dppf)(SCH2CH2CH2S)] (dppf = Fe(η5-C5H4PPh2)2)

  • Han, Won-Seok;Kim, Yong-Joo;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.60-64
    • /
    • 2003
  • The reactions of $[Pt(dppf)Cl_2]$ with thiophenol (PhSH), 1-propanethiol (n-PrSH), and 1,3-propanedithiol $(HSCH_2CH_2CH_2SH)$ gave the corresponding Pt-dppf-di(thiolato) compounds, $[Pt(dppf)(SPh)_2]\;(1),\;[Pt(dppf)(S-n-Pr)_2]\;(2),\;and [Pt(dppf)(SCH_2CH_2CH_2S)]\;(3)$, respectively. All products are monomeric and 4-coordinate square-planar compounds and were structurally characterized by X-ray diffraction. Electrochemical measurements (cyclovoltammograms) revealed that the oxidation potential of the dppf ligand appears to depend on the type of the group on the thiolato ligand.

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.