• 제목/요약/키워드: Organic thin film

검색결과 1,233건 처리시간 0.031초

Improvement in Adhesion of the Indium Zinc Oxide (IZO) Thin Films on Organic Polymer Films

  • Lee, Yeong-Beom;Kim, Kyong-Sub;Ko, Min-Jae;Kim, Kyung-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.537-539
    • /
    • 2009
  • We report the improvement in adhesion of IZO thin films through oxygen ($O_2$) plasma treatment of organic polymer film. In conclusion, the $O_2$ plasma treatment of an organic polymer film was accomplished with improving ca. 1.8 times in adhesion than that of the only general etch treatment on the same organic polymer film.

  • PDF

터널링 박막 두께 변화에 따른 부동 게이트 유기 메모리 소자 (Floating Gate Organic Memory Device with Tunneling Layer's Thickness)

  • 김희성;이붕주;신백균
    • 한국진공학회지
    • /
    • 제21권6호
    • /
    • pp.354-361
    • /
    • 2012
  • 유기 메모리 절연막 제작을 위해 일반적으로 사용되어지는 습식법이 아닌 건식법 중 플라즈마 중합법을 이용하였다. 유기 절연 박막으로 사용된 단량체는 Styrene과 MMA을 사용하고, 터널링 박막은 MMA를 사용하며, 메모리 박막은 열기상증착법을 이용한 Au 박막을 사용하였다. 최적화된 소자의 구조는 Au의 메모리층의 두께를 7 nm, Styrene 게이트 절연막의 두께를 400 nm, MMA 터널링 박막의 두께를 30 nm로 증착하여 제작된 부동 게이트형 유기 메모리 소자는 40/-40 V의 double sweep시 27 V의 히스테리시스 전압을 얻을 수 있었다. 이 특성을 기준하여 유기 메모리의 전하 포집 특성을 얻을 수 있었다. 유기 재료 중 MMA 대비 Styrene의 전하 포집 특성이 좋은 것으로 보아 향후 부동 게이트인 Au 박막을 유기 재료인 Styrene으로 대체하여 플렉시블 소자의 가능성을 기대한다.

유기 전자 소자의 봉지막 투습도 분석을 위한 Ytterbium Test (Ytterbium Test for Water Vapor Transmission Rate Measurement of Passivation Film for Organic Electronics)

  • 임영지;이재현
    • 공업화학
    • /
    • 제29권4호
    • /
    • pp.484-487
    • /
    • 2018
  • 본 논문에서는 유기전자소자에서 사용되는 수분 차단막의 투습도 분석을 위하여 ytterbium의 광학적 전기적 특성을 연구하였다. Ytterbium 박막은 다양한 성막 두께(20-100 nm)에 따라 넓은 범위의 광투과도(70-10%)와 비저항($6.0-0.16m{\Omega}{\cdot}cm$) 값을 나타내었다. 25 nm의 ytterbium 박막은 수분과 반응하여 산화되며 투과도와 저항이 실시간으로 변화하였고 이를 통해 parylene 고분자와 aluminum nitride 적층형 박막 봉지 필름을 분석한 결과 $4.3{\times}10^{-3}g/m^2{\cdot}day$의 투습도를 측정할 수 있었다.

Poly(1,4-bis((E)-2-(3-dodecylthiophen-2-yl)vinyl)benzene) for Solution Processable Organic Thin Film Transistor

  • Kim, Chul-Young;Park, Jong-Gwang;Lee, Min-Jung;Kwon, Soon-Ki;Kim, Jin-Hak;Shin, Sung-Chul;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1659-1663
    • /
    • 2012
  • New semiconducting polymer, poly[1,4-bis(($E$)-2-(5-bromo-3-dodecylthiophen-2-yl)vinyl)benzene], was designed, synthesized and characterized. The structure of polymer was confirmed by $^1H$-NMR, IR and elemental analysis. The polymer was soluble in specific organic solvent. The weight-average molecular weights (MW) of polymer was found to be 11,000 with polydispersity of 1.82. UV-Visible absorption spectrum showed the maximum absorption at 428 nm (in solution) and 438 nm (in film). The highest occupied molecular orbital (HOMO) energy of the polymer is -5.36 eV by measuring cyclic voltammetry (CV). A solutionprocessed polymer thin film transistor device shows a mobility of $8.59{\pm}10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, an on/off current ratio of $2.0{\times}10^4$.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

유기박막트랜지스터 적용을 위한 Soluble Pentacene 박막의 특성연구 (A Study of Soluble Pentacene Thin Film for Organic Thin Film Transistor)

  • 공수철;임현승;신익섭;박형호;전형탁;장영철;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제14권3호
    • /
    • pp.1-6
    • /
    • 2007
  • 본 연구에서는 유기박막트랜지스터(OTFT, Organic Thin film Transistor)에 응용을 위해 용액(soluble) 공정을 통하여 제작된 pentacene 박막의 특성을 분석하여 pentacene 박막의 OTFT 소자에 적용 가능성을 조사하였다. Pentacene을 용해시키기 위해 toluene과 chloroform의 두 종류의 용제를 사용하였으며, 이들 용제가 pentacene 박막의 특성에 미치는 영향을 연구하였다. Pentacene 용액은 ITO/Glass 기판위에 spin-coating 법으로 유기 반도체 박막을 제작하여 각 박막의 표면형상, 결정화 특성과 전기적 특성을 조사하였다. AFM을 이용한 표면 형상 관찰 결과 chloroform을 이용한 pentacene 박막이 toluene을 이용한 박막에 비하여 표면 거칠기가 개선되는 경향을 보여주었다. XRD 회절 분석 결과 모든 pentacene 박막 시료에서 결정화가 되지 않은 비정질 형태를 보여주었다. Hall effect measurement 분석 결과 chloroform 용제를 이용한 pentacene 박막이 toluene용제를 사용한 시료에 비해 보다 우수한 전기적 특성을 나타내었다. 즉, chloroform에 용해된 pentacene 박막의 경우 전하농도와 이동도는 $-3.225{\times}10^{14}\;cm^{-3}$$3.5{\times}10^{-1}\;cm^2\;V^{-1}{\cdot}S^{-1}$를 각각 나타내었다. 또한 비저항은 약 $2.5{\times}10^2\;{\Omega}{\cdot}cm$를 얻었다.

  • PDF

진공증착법을 이용하여 제조한 PVDF 유기 박막의 열적.전기적 안정 특성에 관한 연구 (A Study on the thermal and electrical stability of PVDF organic thin films fabricated by physical vapor deposition method.)

  • 박수홍;이덕출
    • 한국진공학회지
    • /
    • 제8권2호
    • /
    • pp.93-101
    • /
    • 1999
  • The purposed of this paper is to investigate the electrical and thermal stability of Polyvinylidene fluoride(PVDF) organic thin films prepared by the vapor deposition method. The differential scanning calorimetry curve of the PVDF organic thin films prepared by increasing substrate temperature showed that the melting curve increased from $128^{\circ}C$ to $142^{\circ}C$. This result implied that the PVDF organic thin film prepared by increasing substrate temperature increased intermolecular force in the crystalline region. The anomalous properties in dielectric constant and dielectric loss at low frequency and high temperature were described for PVDF organic thin film containing impurity carriers. It was confirmed that in view of electric conductive characteristics the ohm's law is satisfied in the range of lower electric field and ln J was proportional to the electric field ln E as like the conventional property of ionic conduction in the range of higher electric field. It was confirmed that major carrier of conductivity was ions. The electrical stability was improved according to an increase of the substrate temperature. On the basis of this experimental result, it could be observed that the optimum temperature of substrate for the electrical and thermal stability was at $105^{\circ}C$.

  • PDF

MOD 공법을 이용한 텅스텐 브론즈구조의 $Sr_x Ba_{1-x}$ $Nb_2O_6$ 압전 박막의 제조 및 특성 연구 (The study on preparation of $Sr_xBa_{1-x}$ $Nb_2O_6$ piezoelectric Thin Film of tungsten-bronze type by Metal Organic Decomposition Process and their properties)

  • 김광식;김경원;장건익;어순철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.248-249
    • /
    • 2005
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150$\sim$200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400\sim800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding average grain size about 500$\sim$1000 nm influenced by annealing temperature.

  • PDF

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • 김진우;김영찬;엄세원;노용한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

유기 증착 공정을 위한 박막 형상 모델링 EL (Geometric Modeling of Thin-film Thickness Profile for the OLED Evaporation Process)

  • 이응기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1444-1447
    • /
    • 2004
  • For the OLED evaporation process, thin film thickness uniformity is of great practical importance. In order to achieve the better thickness uniformity, geometric simulation of film thickness distribution profile is required. In this paper, a geometric modeling algorithm is introduced for process simulation of full-color OLED evaporating system. The physical fact of the evaporation process is modeled mathematically. Based on the developed method, the uniformity of the organic layer thickness can be successfully controlled.

  • PDF