• Title/Summary/Keyword: Organic system

Search Result 3,846, Processing Time 0.037 seconds

A study on the management of harmful working environments for Increase of Labor productivity. (노동생산성 향상을 위한 유해작업환경관리에 관한 연구)

  • 조태웅;유익현;박성애
    • Journal of Environmental Health Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-44
    • /
    • 1976
  • This study was carried out to evaluate the harmful factors in working environments and to investigate the labor productivity after improvement of environments, surveying 93 industrial establishments of 10 industries located in Youngdeungpo industrial area in Seoul. The results obtained were as follows: 1) The highest noise level of 125dB(A) was indicated at the rolling process of transport equipment manufacturing industry. 2) The best illumination level was shown in precise machinery industry and the worst was indicated in rubber products, metallic products and transport equipment manufacturing industries. 3) Thermal conditions were above threshold limit value (TLV) at more than two processes of all industries except printing industry. 4) The highest dust concentration was determined in textile and wearing manufacturing industry. 5) Organic solvents were detected at 52 processes in 93 industrial establishments and 33 processes of them showed higher than TLV. The results about harmful chemicals were as follows: a) sulfur dioxide ($SO_2$)was determined higher than TLV on welding process of metallic product manufacturing industry and heat treatment process of transport equipment manufacturing industry. b) Carbon monoxide (CO) concentration was 700ppm at heat treatment process of transport equipment manufacturing industry, indicating 14 times of TLV. c) vinylchloride concentration in the air of PVC raw material mixing process and PVC preparation process of chemical product manufacturing industry was determined higher than TLV. d) Hydrochloride (HCl) concentration in the air of wire expanding process of transport equipment manufacturing industry was determined higher than TLV. 7) Higher values of lead concentration than TLV were determined at lead welding metallic product manufacturing industry and type planting process of process of printing industry, $1.8mg/m^3$ and $0.3mg/m^3$ respectively. 9) 22, 968 of 52, 855 workers (i.e. 43.5%) in 93 industries were exposed to various harmful agents. 10) It was found that the improvement of illumination in electric apparatus manufacturing industry (from 20~40 lux to 420 lux) resulted in an increase in productivity of 6.5% per capita and a decrease in faulty products of 19%. 11) Improvement of environments using local exhaust ventilation system resulted in a decrease of harmful substances lower than TLV and an increase in productivity of 11.4%. 12) Improvement of shovelling tools based on ergonomics resulted in a reduction in energy expenditure of 25.3% and an increase in productivity of 32.2% per capita.

  • PDF

Impact Assessment of Turbidity Water caused Clays on Algae Growth (조류성장에 미치는 점토탁수의 영향평가)

  • Park, Chan-Gab;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.403-409
    • /
    • 2006
  • This study was performed to assess the clay impact on alga growth which was a primary producer, in view of food chain in ecosystem. As clay minerals caused turbidity, a low sedimentation, high adsorption capacity with organic matter, adsorption - desorption effect with ionic chemicals, clay minerals were supposed to have a significant effect on the aquatic system. In study we tried to turn out NOAEL (No-observed-adverse-effect-level) of clay materials on the algae growth inhibition using such as kaolinite, sericite and montmorillonite. This study was indicated. (1) In both of kaolinite and sericite, the $72hr-EC_{50}$ of them shows 2,752 mg/L and 2,775 mg/L, respectively. (2) On the other hand, in the case of montmorillonite, the $72hr-EC_{50}$ is not shown a significant difference to that of control samples. (3) It can be explained that is also a very important parameter in an alga growth. Because an alga growth was increased when the permeability of W visible radiation was increased in all clay cases. (4) It is demonstrated alga growth was affected by the characteristics of clay materials. Hence we can assess the $\ulcorner$water environmental risk assessment caused clay materials$\lrcorner$ using the alga growth inhibition level indirectly.

Physicochemical Characteristics and Nutrient Release from Sediment in an Urban Stream (도심하천 퇴적물의 이화학적 특성과 영양염 용출)

  • Kim, Tae Hoon;Jung, Jae Hoon;Choi, Sun Hwa;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.167-176
    • /
    • 2015
  • The water quality of the Gulpo Stream flowing through Incheon, Bucheon, Seoul, and Kimpo is getting worse due to a slow flow rate and bank constructions by stream channelization as well as an inflow of pollutants from living-sewages and factory-sewages. Besides, a dry stream phenomenon caused by a lack of maintenance water upstream makes a self-purification system worse, and the water quality of the Gulpo Stream is currently at its lowest level. The accumulated sludge of the streambed is mostly formed by the deposition of particle pollutants due to the slow flow rate and an artificially straightened stream channel. This accumulated sludge adsorbs a great quantity of organic materials and heavy metals. Because of the internal contamination possibility by a re-gushing, even after the pollution source is removed, it can cause future water pollution. Without a total examination as previously recommended, it is considered difficult to accomplish practical efficiency. In conclusion, the management of periodic sediment management such as dredging would be necessary in the Gulpo Stream because sediment could be an internal pollution source of stream water under anaerobic conditions.

Rice Cropping Methods for Natural Reestablishment of Chinese Milkvetch (자연적인 자운영 재입모를 위한 적정 벼 재배유형)

  • 김영광;홍광표;정완규;최용조;송근우;강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.473-477
    • /
    • 2001
  • Chinese milkvetch (Astragalus sinicus L.) has been traditionally used as a green manure supplying mineral N and organic matters to soil. In rice-Chinese milkvetch interrelay cropping system, three rice cultivating methods (no-till direct seeding, no-till transplanting, and tillage transplanting) were evaluated for stand reestablishment without reseeding Chinese milkvetch with two cropping times (May 25 and June 4) for two years. Chinese milkvetch incorporated was decomposed rapidly in the first week. Decomposition was fast in topsoil than in subsoil. Natural milkvetch reestablishment (NMR), following harvest of no-till-direct-sown rice was good enough to cover the paddy field in both cropping times, but rice yield of this method was lower than that of transplanted rice on paddy field without milkvetch cultivation. Even though good NMR was secured in no-till rice transplanting, the shoot of milkvetch should be removed before machine-transplanting of rice seedlings. NMR was better in rice cropping at the mid-ripening stage of milkvetch (June 4) than at the late-bloom stage (May 25). Rice yield was higher in tillage transplanting at the mid-ripening stage of milkvetch (June 4) than in the other rice cropping method.

  • PDF

Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon (석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향)

  • Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.965-972
    • /
    • 2010
  • The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

The study on the measurement of volatile organic compounds in the air of A and B industrial area (모 공단 대기 중 휘발성 유기화합물 측정에 관한 연구)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.130-144
    • /
    • 2004
  • Recently, the air pollution in A and B industrial area has become one of the most important issues, then 60 VOCs in the area were measured using a highly sensitive method. The VOCs were adsorbed onto Carbotrap using air sampler and subsequently desorbed by a thermal desorber system into gas chromatograph-mass spectrometry (TDS-GC-MS). The peaks of all compounds had good chromatographic properties and offered very sensitive response for the EI-MS (SIM). Method detection limits (MDL) ranged from 0.01 to 0.1 ppt(v/v), and linearities of calibration curves were over 0.995. We analyzed total 90 atmosphere air samples of A and B industrial complex using the method. Benzene, toluene, ethylbenzene, xylene, n-hexane, fluorotrichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene and naphthalen were identified as the major compounds in the air, and their average concentrations were 0.81, 5.02 1.30, 3.0, 0.81, 37.9, 0.07, 0.15, 0.15, 0.79, 0.06, 0.33, 0.03, 0.12, 0.23, and 0.35 ppb(v/v), respectively. The concentrations of VOCs were low in summer and high in fall or winter. When the concentrations detected in air compare with WHO's norm, no case exceed it.

Fiber-optic Temperature Sensor Using a Silicone Oil and an OTDR (OTDR을 이용한 실리콘 오일 기반의 광섬유 온도 센서)

  • Jang, Jae Seok;Yoo, Wook Jae;Shin, Sang Hun;Lee, Dong Eun;Kim, Mingeon;Kim, Hye Jin;Song, Young Beom;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1592-1597
    • /
    • 2015
  • In this study, we developed a fiber-optic temperature sensor (FOTS) based on a silicone oil and an optical time domain reflectometer (OTDR) to apply the measurement of a coolant leakage in the nuclear power plant. The sensing probe of the FOTS consists of a silicone oil, a stainless steel cap, a FC terminator, and a single mode optical fiber. Fresnel reflection arising at the interface between the silicone oil and the single mode optical fiber in the sensing probe is changed by varying the refractive index of the silicone oil according to the temperature. Therefore, we measured the optical power of the light signals reflected from the sensing probe. The measurable temperature range of the FOTS using a Cu-coated silica fiber is from $70^{\circ}C$ to $340^{\circ}C$ and the maximum operation temperature of the FOTS is sufficient for usage at the secondary system in the nuclear power plant.