• Title/Summary/Keyword: Organic solvent tolerant Bacillus sp.

Search Result 4, Processing Time 0.015 seconds

Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006 (유기용매내성세균 Bacillus sp. BCNU 5006의 유용성)

  • Choi, Hye-Jung;Hwang, Min-Jung;Kim, Bong-Su;Jeong, Yong-Kee;Joo, Woo-Hong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • In the screening process of organic solvent tolerant bacteria showing good growth in media containing several kinds of organic solvents, one strain was isolated and identified as Bacillus sp. BCNU 5006. The strain was able to tolerate many organic solvents including benzene, toluene, xylene, octane, dodecane, butanol and ethylbenzene. Likewise, it could also utilize these solvents as the sole source of carbon with significant enzyme production. The lipolytic enzyme stability of Bacillus sp. BCNU 5006 was studied in the presence of several kinds of solvents at a 25% (v/v) concentration. The highest enzyme stability was observed in the presence of octane (107%), followed by ethylbenzene (88%), decane (86%), and chloroform (85%). Especially, BCNU 5006 lipase was determined to be more stable than immobilized enzyme (Novozyme 435) in the presence of octane, chloroform and xylene. This organic solvent tolerant Bacillus sp. BCNU 5006 could be expected as a potential bioremediation agent and biocatalyst for biodegradation and provide on organic-solvent-based enzymatic synthetic method in industrial chemical processes.

Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005 (유기용매내성 세균 Bacillus sp. BCNU 5005의 유용성에 대한 검증)

  • Choi, Hye-Jung;Hwang, Min-Jung;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.700-705
    • /
    • 2011
  • Using enrichment procedures, we isolated organic solvent-tolerant Bacillus sp. BCNU 5005 from waste water and soil in the Ulsan industrial plant region. BCNU 5005 had a maximum similarity of 98% with B. subtilis and was designated as B. subtilis based on phylogenetic analyses using 16S rDNA sequences. Generally, most bacteria and their enzymes are destroyed or inactivated in the presence of high concentrations of organic solvents. However, the lipase activity of B. subtilis BCNU 5005 was very stable in the presence of various kinds of solvents (25%, v/v) except chloroform, ethylbenzene and decane. Furthermore, BCNU 5005 was determined to have a degradative ability towards organic solvents. This organic solvent tolerant Bacillus sp. BCNU 5005 could be used as a new potential resource for biotransformation and bioremediation.

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Rheological Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알카리 내성 Bacillus sp.가 생산하는 생물 고분자의 리올로지적 성질)

  • Lee, Shin-Young;Kim, Jin-Young;Shim, Chang-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-544
    • /
    • 1996
  • A highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its rheological properties were studied. 1% (w/v) solution of purified biopolymer showed pseudoplastic fluid behavior with the yield stress similar to those of xanthan and guar gum, and its consistency index was exponentially dependent on concentration and temperature. The concentration dependency of consistency index exhibited two rectilinear plots with different slopes at 1% concentration and pseudoplastic property increased with the increase of biopolymer concentration. The biopolymer solution exhibited a low temperature dependency and the activation energy of flow was 1.16 kacl/g mol. The apparent viscosity was very dependent on the change of pH and the addition of salt. However, no organic solvent effects were observed effects of viscosity synergism with the addition of viscosifier were not observed.

  • PDF