• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.03 seconds

Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal (입도와 흑연 첨가제에 따른 유해 입자 및 가스 동시제거용 세라믹필터 특성평가)

  • Cho, Eul-Hun;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.454-459
    • /
    • 2014
  • In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.

Enhanced removal of phosphate on modified ion exchanger with competing ion (음이온 교환수지를 이용한 인제거 향상)

  • Nam, Ju-Hee;Lee, Sang-Hyup;Choi, Jae-Woo;Hong, Seok-Won;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.121-128
    • /
    • 2013
  • The concern for dissolved phosphate in water/wastewater has been increasing because of the risk for eutrophication. A variety of conventional and advanced technologies were applied to meet the enforced new regulation of phosphate around the world. However, there still remained a lot of challenge because most introduced/developed method, for example, biological and physic-chemical treatment is not easy to satisfy the new regulation of phosphate in water. In order to meet the new regulation, the application of ion exchanger has been tried which showed that the removal efficiency for phosphate was strongly determined by in the presence of the competing ion, especially sulfate. As results, a new class of ion exchanger governed by ligand exchange was developed and investigated to increase the selectivity for phosphate. The current study using organic/inorganic anion exchanger developed with Lewis acid-base interaction confirms the selectivity for phosphate over sulfate. According to isotherm test and column test, the value of the maximum phosphate uptake (Q) showed 64 mg/g as $po{_4}^{3-}$ and the breakthrough for phosphate occurs after 1000 min and completely finishes at 2500 min, respectively.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Effects of Inflow Fluctuation on the Removal Efficiency in Low Strength Sewage Treatment using Sequencing Batch Reactor Process during Rainfall (강우시 저농도 고수리부하가 회분식 반응조 제거효율에 미치는 영향)

  • Oa, Seongwook;Kim, Geonha;Son, Bongho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.91-96
    • /
    • 2006
  • Many small scale Sewage Treatment Plants (STPs) are currently being constructed at many rural areas. The STPs in rural area suffer from low concentration and large inflow quantity fluctuation during wet weather mainly due to illicit combined sewer system. Sequencing Batch Reactor (SBR) is a process effectively coping with these obstacles. The main objective of this study was to evaluate SBR with high hydraulic loading and low inflow concentration. The operating conditions tested were: organic loading rate = $0.17-0.42KgBOD/m^3/d$, hydraulic loadings = $12.1-61.5m^3/m^2/d$, average MLSS concentration = 2500 mg/L, F/M ratio = 0.026-0.17 KgBOD/Kg MLSS, HRT = 9-12 hr HRT, and SRT = 5.6-33.6 days. Organic loading rate on SBR did not impact significantly on BOD and SS removal efficiencies. To increase treatment efficiencies, low hydraulic loading rate with low concentration was required. The results suggested that low influent concentration with high inflow rates during wet weather requires extended time for settling.

Complex odor removal in pilot-scale biofilter with microorganisms immobilized on polymer gel media (미생물 포괄고정화 담체를 적용한 파일럿 스케일 바이오필터에서의 복합악취 제거)

  • Kim, Sun-Jin;Kim, Tae-Hyeong;Lee, Yun-Hee;Jang, Hyun-Sup;Song, Ji-Hyeon;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.741-750
    • /
    • 2011
  • A pilot-scale biofilter was constructed to discover degradation characteristics of the complex odor discharged from Ansan wastewater treatment plant. Candida tropicalis for volatile organic compounds, sulfur oxidizing bacteria(SOB) for hydrogen sulfide, and bacteria extracted from feces soil were immobilized on a polymer gel media. According to this study, the EBCT was varied from 36 sec to 18 sec. Toluene was removed as 80% along the variations, but it was recovered as 100% within 1 week. All benzene and xylene were removed during the operation while the efficiency of hydrogen sulfur was temporary decreased at 18 sec of EBCT, thereafter it was recovered to 100% within a week. The maximum elimination capacities of the benzene, toluene, xylene, and hydrogen sulfur were 6.6 g/$m^{3}$/hr, 31.7 g/$m^{3}$/hr, 7.8 g/$m^{3}$/hr, and 133.6 g/$m^{3}$/hr, respectively. There were merits on removal both organic and inorganic complex odor using the pilot-scale biofilter embedded with microorganisms immobilized on polymer gel media.

Preparation of Silicone Polymeric Membrane and Removal of Chlorinated Organic Compounds by Pervaporation (실리콘계 고분자막의 제조와 투과증발법에 의한 유기염소계 화합물 제거)

  • 백귀찬;이용택;김용옥
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.114-125
    • /
    • 1999
  • Dense polymer membranes were made from vanous silicone polymers such as poly(1-trimethylsilyl-1-propyneHPTMSP), poly(dimethylsiloxaneHPDMS), PTMSP- g-PDMS. These membranes were evaluated in terms of the removal of chlorinated organic hydrocarbons such as chloroform, trichloroethylene(TCE), perchloroethylene(PCE) from water by pervaporation. It was possible for membranes used in this study to remove PCE selectively which is dissolved small quantity in water among other separable solutes. PTMSP membranes exhibited a remarkable decay in permeability with time because of the free volume decreases. However, PTMSP-g-PDMS membrane underwent no physical aging and showed the stable flux behavior. From the results of the contact angle measurement, polymeric membranes used in this study showed affinity with solutes for separation and no affinity with water. The relative swelling degree was directly related to the selectivity, while it has no influence on the flux.

  • PDF

Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials (건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해)

  • Jo Wan-Kuen;Chun Hee-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

Recent Trends in the Biosorption of Heavy Metals: A Review

  • Sag, Yesim;Kutsal, Tulin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.376-385
    • /
    • 2001
  • Considerable attention has been focused in recent years upon the field of biosorption for the removal of metal ions from aqeous effluents. Compared to other technologies, the advan-tages of biosortption are the high purity of the treated waste water and the cheap raw material. Really, the first major challenge for the biosorption field is to select the most promising types of biomass. Abundant biomass types either generated as a waste by-product of large-scale industrial fermentations particularly fungi or certain metal-binding seaweeds have gained importance in re-cent years due to their natural occurrence, low cost and, of course good performance in metal biosorption. Industrial solutions commonly contain multimetal systems or several organic and in organic substances that form complexes with metals at relatively high stability forming a very complex environment. When several components are present, interference and competition phe-nomena for sorption sites occur and lead to a more complex mathematical formulation of the process. The most optimal configuration for continuous flow-biosorption seems to the packed-bed column which gets gradually from the feed to the solution exit end. Owing to the com-petitive ion exchange taking place in the column, one or more of the metals present even at trace levels may overshot the acceptable limit in the column effluent before the breakthrough point of the trargeted metal. Occurrence of 'overshoot's and impact on havey metal removal has not been analyzed enough. New trends in biosorption are discussed in this review.

  • PDF

In-situ Characterization of Electrochemical and Frictional Behaviors During Copper CMP

  • Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.227-230
    • /
    • 2004
  • As the organic acids were added in the slurry, zeta potential of alumina was changed to negative value and IEP value was shifted from alkaline to acidic pH. In citric acid based slurry, Cu surface continuously dissolved and etching depth linearly increased. On the contrary, passivation layer was grown on Cu surface in oxalic acid based slurry. As the platen rotation speed increased, Preston coefficient decreased in both slurries. With oxalic acid based slurry, at low velocity, removal rate is high value because of high friction force compared to citric acid based slurry. As platen velocity increased, removal of Cu in citric acid based slurry became higher value than oxalic acid based slurry. Typical lubrication behaviors were observed in both slurries. As Sommerfeld number increased, COF values gradually decreased and then re-increased. It indicated that lubrication was changed to direct contact or semi-direct contact mode to hydro-lubrication mode.

  • PDF

Treatment Characteristics of Synthetic Wastewater using Immobilized Nitrobacteria, Denitrobacteria (고정화 질산균, 탈질균을 이용한 합성폐수의 처리 특성)

  • Won, Chan-Hee;Heo, Young-Duck;Yun, Jae-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 1997
  • The objectives of this study were to find out the optimum treatment conditions for removing nitrogen in a synthetic wastewater by using microorganisms immobilized with PVA-Freezing method. The samples used as influents to the laboratory scale treatment units were a synthetic wastewater. The experiments in this study were mainly directed to collect the data of nitrogen and organic matter removal efficiencies for the different hydraulic and internal recycle rates conditions, temperature and influent C/N ratios. The removal efficiencies of nitrogen and organic matters were investigated for the operating conditions of HRT 2~12hours, internal recycle rates 50~400%, temperatures $15{\sim}30^{\circ}C$ and C/N ratios 2.5~7.5. The adequate internal recycle rate for removing T-N and $BOD_5$ in the synthetic wastewater was found to be about 300% at the temperature of $30^{\circ}C$ when the ratio of carbon contents to the nitrogen (C/N) in the influent was around 5.5. Under these conditions, the final effluent concentrations of T-N and $BOD_5$ were 8.7 and 8.4 mg/l, respectively.

  • PDF