• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.035 seconds

Pilot Scale Assessment of DOC and THMs Removal in Conventional Water Treatment System

  • Lee, Choong-Dae;Lee, Yoon-Jin
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.829-834
    • /
    • 2006
  • This research aims to investigate the behavior of organic matter that causes bacterial re-growth and the formation of disinfectant by-products such as THM in water treatment, and to optimize conditions for a more efficient and conventional water facility. THM removed 51 % and 12 % through coagulation/sedimentation and filtration using a selected conventional system. In this experiment, the removal ratio of DOC was highest at 68 % when the Gt value was 42,000 and lowest at 41 % when the Gt value was 30,000. 77-84 % of total DOC was removed during coagulation/sedimentation, and 15-23 % was removed during filtration. When Gt values were between 30,000 and 66,000, over 50 % of high molecular matter above 10 K during coagulation/sedimentation was removed. Turbidity removed 98 % when the G1 value was 66,000. As the Gt value increased, the turbidity removal ratio increased. Turbidity removed over 20 % during the filtration process.

Effects of media weight and pre-ozonation on the biodegradability enhancement in biological fluidized bed (생물활성탄 유동상법에서 충전량과 전오존처리가 생물처리효율에 미치는 영향)

  • 우달식;곽필재;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • Biological drinking water treatment is widely used in Europe for the removal of ammonia nitrogen and organics. During the last 16 years, the deterioration of the quality of surface waters used to produce drinking water has resulted in the widespread use of ozone-biological treatment in Korea. This study were conducted to determine the effect of media weight and preozonation on the biodegradability enhancement in biological fluidized bed(BFB) using Han river water. When the carbon weight was increased, $NH_{3}-N$ and DOC removal increased, but turbidity and SS removal decreased. To remove turbidity and SS, the bed depth in 40% expansion rate/total bed depth was very important. Preozonation of raw water was not effective in $NH_{3}-N$, but increased in biodegradable organic fraction about 10-30% with 0.425-0.85 mg $O_{3}/mg$ DOC.

  • PDF

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

Aluminium-Pilland Bentonites with Amphoteric Surfactant as a Novel Organoclay for Phosphate Removal (양쪽성 계면 활성제로 치환된 알루미늄 층간가교 유기 벤토나이트를 이용한 수중 인산염 제거)

  • Kim, Soo-Hong;Kim, Ja-Keun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.966-972
    • /
    • 2007
  • A novel organoclay has been developed with aluminium-pillared clay modified with an amphoteric surfactant, N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS). This novel organoclay is expected to have phosphorus removal capacity as well as organic and inorganic contaminant removal capacity, due to aluminum inside the clay structure. It also exhibited less surfactant desorption than conventional cation surfactant-based organoclays. Phosphorus in water can be decreased from 0.2 mg/L to 0.0012 mg/L in 27 hours with this organoclay. Also, cadmium could removed from water using this proposed organo-clay. Experiments were performed under various pHs and amphoteric surfactants sorption capability was the highest at pH 5 when more of the amphoteric surfactant head group took on positive charges.

Prediction of Effluent Concentration for Contaminated Stream Purification using UFBR (상향류식 고정생물막조를 이용한 오염소하천 정화에 있어서 유출수 농도 예측)

  • Park, Young-Seek;Moon, Jung-Hynu;Ahn, Kab-Hwan
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • The objective of this study is to treat contaminated stream by using a UFBR(upflow fixed biofilm reactor) packed with waste-concrete media. This system was tested from June 1999 to January 2000. Over $20.0^{\circ}C$, $COD_{cr}$ removal efficiency did not affected with organic loading rate while, $COD_{cr}$ removal efficiency decreased about 7% with decrease of temperature from $27.0^{\circ}C$ to $8.7^{\circ}C$. Under $16^{\circ}C$, TKN removal efficiency was affected with TKN loading rate. The proposed model apply to mass balance equation of fixed biofilm reactor for predicting effluent was well satisfied with measured value($R^2=0.94$).

  • PDF

A Basic Study for Treatment of Sewage and Leachate Using Submerged Nonwoven Bioreactor(SNBR) (부직포활성슬러지법에 의한 하수와 침출수처리에 관한 기초연구)

  • 정유진;고현웅;김경순;윤태경;성낙창
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1095-1100
    • /
    • 2003
  • In this study, it was performed using submerged nonwoven bioreactor(SNBR) for removal of organic matter, nitrogen and phosphate under different aeration intervals(intermittent aeration). We applied the SNBR at the cheap nonwoven fiber module instead of the expensive membrane. The SUBR was mainly made up of an activated sludge reactor and a transverse flow nonwoven module, with an innovative configuration being in application between them. In case of sewage, the aeration conditions experimented consist of continuous aeration and 60min/60min, 120min/60min, 120min/120min of aeration/nonaeration time intervals, respectively. In case of landfill leachate, the intermittent aeration condition was 120min/120min at aeration/nonaeration. Consequently, a high COD removal rate (about 94%) was achieved in sewage and leachate. Although nutrient removal rate was relatively high without any additional chemicals.

Biodegradation Characteristics of Dimethyl sulfide [DMS] by Isolated Gordonia sihwaniensis PKL-1 (Dimethyl Sulfide [DMS] 분해균주인 Gordonia sihwaniensis PKL-1의 생물학적 분해특성)

  • 정인경;이일현;박창호
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 2004
  • Biodegradation of dimethyl sulfide (DMS) was studied in a batch culture using Gordonia sihwaniensis PKL-1 isolated from a compost biofilter after 100 days of operation for the removal of volatile organic compounds. Optimal pH and temperature for the removal of DMS were 7 and $25^{\circ}C$, respectively. The Michaelis-Menten kinetic constants for DMS removal, $\upsilon_{max}$ and $K_s$, were 0.0016 mg/(mg-protein)ㆍhr, and 8.05 mg/L, respectively.

Removal of Humic Substances on Slow Sand Filtration Amended by GAC (휴믹물질 제거를 위한 완속여과공정에서의 GAC도입)

  • Ahn, Woo-Jung;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2005
  • Slow sand filtration processes amended with 5 and 10cm GAC layers at top was compared to same process at bottom in a pilot study for humic substances removal. In case of 5cm GAC layer, the process amended at bottom was superior to the process at top in DOC and UV254nm removal and same trends were observed in case of 10cm GAC layer. Head loss developments of the process GAC at bottom were higher than the process GAC at top so that maintenance of the process GAC at top is easier than the process GAC at bottom.

Characteristics of Biological Nitrogen Removal for Low C/N Ratio Municipal Wastewater Using Methanol as an External Carbon Source in $A_2O$ Fluidized Media Process (유동여재 $A_2O$공정에서 외부탄소원으로 메탄올을 이용한 낮은 C/N비 하수의 생물학적 질소제거 특성)

  • Yoon, Cho-Hee;Kim, Min-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.687-692
    • /
    • 2006
  • This experiment was performed to evaluate the characteristics of BNR system performance, behavior of pollutants as organic and nitrogen at each basin and the effects of C/N ratio on biological nitrogen removal with methanol as an external carbon source for a low C/N ratio municipal wastewater. A lab-scale $A_2O$ system by employing the aerobic basin with the fluidized polyurethane media, which was $10{\sim}20$ mm rube type like a sponge, was used. The aerobic basin was hybrid type to be suspended and fixed biomass. The obtained results from this study were as follows; When no methanol was added, suspended biomass was 3 times more than that of the fluidized media in this system(total biomass 80 g). Biomass growed by an external carbon was firstly attached on media, and then suspended. $COD_{Cr}$ concentration for the effluent was a range of 13 to 29 mg/L regardless of pouring an external carbon. For nitrogen, the effluent concentration was $20.0{\sim}35.9mg/L$(removal efficiency; 18%) in case of no addition of an external carbon, but was $2.5{\sim}9.0mg/L$(removal efficiency ; $71{\sim}83%$) with addition of methanol. For the characteristics of pollutants removal, most of $COD_{Cr}$ were removed at the anaerobic basin when no external organic carbon was added, and were removed at the anoxic basin in case of adding external organic carbon but at the aerobic basin in case of adding excess external organic carbon. On the other hand, most TIN(total inorganic nitrogen) were removed at the anaerobic basin when no external organic carbon was added, but when an external organic carbon was added, they were removed at the anaerobic basin under unstable condition and at the anoxic basin under stable condition.

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.