• Title/Summary/Keyword: Organic reaction in water

Search Result 449, Processing Time 0.023 seconds

Synthesis of Fructose Ester Compound by Lipase in Organic Solvent (유기용매계에서 Lipase에 의한 Fructose Ester의 합성)

  • 신영민;이상옥;이재동;이태호
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.181-186
    • /
    • 1997
  • Sugar ester compounds were synthesized in organic solvent using lipase. Anhydrous pyridinc was selected as ;I solvent because of reasonable solubility of sugar. The synthesis of sugar ester compound was catalyzed by Pseudomonas sp. lipase in the reaction system containing anhydrous pyridine as .i solvent and vinyl butylate as an acyl donor. The analysis of the reaction product by TLC and GC showed thilt monobutyryl and dibutyryl fructose esters were synthesized by transesterification reaction between fructose and vinyl butyrate. Optimal conditions for the transesterification reaction were as follows: the ratio of fructoselvinyl butylate, I : lO(M : M): reaction temperature, 40^{\circ}C.$, velocity of shaking, 150 rprn: concentration of enzyme, 10 mglml. The longer the reaction period, the higher the conversion rate, and the conversion rate reached up to 90% after about 10 days of reaction. Monobutyryl fructose was mainly synthesized in the early stage of reaction, but the amount of dibutyryl fructose increased gradually as the rcdction progressed. When a small amount of water was added to the reaction mixture (micro-water system), the reaction rate decreased, while that of rnonobutyr~l fructosc increased. Only monobutyryl fructose was obtained when 1% water was added to the reaction mixture.

  • PDF

Dependency of Water Availability on the Esterifying Activity of Candida cylindracea Lipase in Organic Solvent

  • Moor, Izani;Noor, Jamil;Ibrahim che Omar
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2000
  • To establish optimal conditions for esterification by Candida cylindracea, lipase reactions were performed simultaneously, separately, or individually in the varying initial rates of $0.014-0.060\mu$mole free fatty acids consumed min-1g-1. The reactants which were conditioned at aw of 0.12 gave the highest initial rate of esterifying $0.060\mu$mole free fatty acids consumed min-1g-1. These results suggest that the esterifying activity of lipase in an organic system depends on the transfer of available water within the reaction system.

  • PDF

Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand (유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구)

  • 박상원;박병주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

Decomposition of Trchloroethylene/Air Mixture by Electron Beam Irradiation in a Flow Reactor (전자빔을 이용한 흐름반응기에서의 Trichloroethylene/Air 분해)

  • ;;;Tatiana Stuchinskaya
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2001
  • Decomposition of trichloroethlyene(TCE) in electron beam irradiation was examined on order to obtain information on the treatment of VOC in air. Air containing vaporized TCE has been studied in a flow reactor with different reaction environments, at various initial TCE concentration and in the presence and absence of water vapor. Maximum decomposition was observed in oxygen reaction environment and the degree of decomposition was about 99% at 20kGy for 2,000ppm initial TCE. The concentration of TCE exponentially decreased with dose in air and pure oxygen. The effect of water vapor on TCE decomposition efficiency was examined. The decomposition rate of TCE in the presence of water vapor (5,600 ppm) was approximately 10% higher than that in the absence of water vapor. Dichloroacetic acid, dichloroacethyl chloride and dichloroethyl ester acid were identified as primary products of this reaction adn were decomposed and oxidized to yield CO and $CO_2$. Perchloroethylene, hexachloroethane, chloroform and carbon tetrachloride were also observed as highly chlorinat-ed by products.

  • PDF

Water Activity Control in Lipase-catalyzed Reaction System

  • Rhee, Joon-Shick;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.191-196
    • /
    • 1998
  • This mini review describes the effects of water activity (${\alpha}_w$) on the kinetics, regio- and enantioselectivities of lipases, and various methods for measuring and controlling ${\alpha}_w$ in lipase catalyzed reaction in organic solvent.

  • PDF

The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process (무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석)

  • Chae, Soo Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).

Reaction Mechanism and Kinetics of Degradation for Refractory Organic Pollutants in Water by Ultrasonic Irradiation

  • Sohn, Jong-Ryeul;Moon, Kyung-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.123-127
    • /
    • 2003
  • This experiment was performed to investigate the characteristics of sonolytic reaction as the basic data for development of the ultrasonic AOP(Advanced Oxidation Process) process from which the refractory organic compounds in aqueous solution which are not readily removed by the existing conventional wastewater treatment processes can be destructed and removed. Trichloroethylene (TCE), benzene, and 2,4-dichlorophenol(DCP) were used as the samples, and their destruction efficiency were measured in terms of experimental parameters of the initial solution concentration, initial solution pH, reaction temperature, acoustic frequencies and intensities. Results showed that the destruction efficiencies of all of the sample materials were above 80% within 120 minutes of sonolytic reaction in all reaction condition. The reaction order of these three compounds was verified as Pseudo first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as H$.$and OH$.$causing the high increase of pressure and temperature. Finally, it appears that the new AOP technology using ultrasonic irradiation can be applied to the treatment of refractory substances which are difficult to be decomposed by the conventional methods.

  • PDF

Enzyme-Catalyzed Transesterification Processes in Organic Solvents (미생물 계면활성제에 관한 연구(제3보);유기용매에서 효소를 촉매로 한 에스테르교환반응)

  • Kim, Sang-Chun;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 1992
  • Lipases catalyzed the transesterification reaction between esters and various primary and secondary alcohols in a 99% organic medium, porcine pancreatic, yeast, mold lipases can vigorously act as catalysts in a number of nearly anhydrous organic solvents. Various transesterification reactions catalyzed by porcine pancreatic lipase in hexane obey Michaelis-Menten kinetics. The dependence of the catalytic activity of the enzyme in organic media on the pH of the aqueous solution from which it was recovered is bell-shaped, with the maximum coinciding with the pH optimum of the enzymatic activity in water. The catalytic power exhibited by the lipases in organic solvents is comparable to that displayed in water. In addition to transesterification, lipases Can catalyze several other processes in organic media.

Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradation of Gas-Phase VOCs using $TiO_2$Photocatalyst: TCE and Acetone

  • Kim, Sang-Bum;Jo, Young-Min;Cha, Wang-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.35-42
    • /
    • 2001
  • Recent development of photocatalytic degradation method that is mediated by TiO$_2$ is of interest in the treatment of volatile organic compounds(VOCs). In this study, trichloroethylene(TCE) and acetone were closely examined in a batch scale of photo-reactor as a function of water vapor, oxygen, and temperature. Water vapor inhibited the photocatalytic degradation of acetone, while there was an optimum concentration in TCE. A lower efficiency was found in nitrogen atmosphere than air, and the effect of oxygen on photocatalytic degradation of acetone was greater than on that of TCE. The optimum reaction temperature on photocatalytic degradation was about 45$^{\circ}C$ for both compounds. NO organic byproducts were detected for both compounds under the present experimental conditions. It was ascertained that the photocatalytic reaction in a batch scale of photo-reactor was very effective in removing VOCs such as TCE and acetone in the gaseous phase.

  • PDF

Tyrosinase Reaction in AOT/Isooctane/Reverse Micelles (AOT/이소옥탄/역미셀계에서의 Tyrosinase 반응)

  • Han, Dae-Seok;Shin, Yu-Jung;Jung, Sung-Won;Song, Hyo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.454-460
    • /
    • 2000
  • It is difficult to accurately evaluate the effect of lipophilic compounds in aqueous reaction system of enzymes because they are immiscible with water. To screen lipophilic inhibitors of tyrosinase which catalyzes the synthesis of melanin in vivo, an optically clear organic system composed of organic solvent, surfactant, and water, often called reverse micelles(RM), was introduced. Optimal RM to let tyrosinase act normally was composed of isooctane as an organic solvent and dioctyl sulfosuccinate(AOT) of 100 mM as a surfactant. When a molar ratio of water to surfactant was 15, tyrosinase(105.3 units) in RM showed a similar reactivity toward 3,4-dihydroxyphenylalanine(0.18 mM) as in the aqueous assay system. In the presence of cinnamic acid, the product formation of tyrosinase reaction was proportional to the reaction time. This indicates that the inhibitory effect of lipophilic compounds could be analyzed in RM.

  • PDF