• Title/Summary/Keyword: Organic polymer

Search Result 1,532, Processing Time 0.034 seconds

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Self-Organization of Dendron-Poly(ethylene glycol) Conjugates in an Aqueous Phase

  • Kim, Kyoung-Taek;Lee, Im-Hae;Park, Chiyoung;Song, Yu-Mi;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.528-533
    • /
    • 2004
  • We have prepared amide dendrons having alkyl peripheral units and various focal moieties through a convergent synthetic approach. The amphiphilic properties, due to hydrophilic amide branches and the hydrophobic peripheral units, provide an opportunity for the amide dendrons to self-organize in water. The dendritic architecture itself is also one of the critical factors in the self-organization of the amide dendrons in water. In particular, function-alization was performed at the focal point to elucidate the relationship between the focal functionality and the self-organized structures of the dendritic building blocks in the aqueous phase. The dendron having a short poly(ethylene glycol) monomethyl ether (MeO-PEG) unit (M$\_$n/ =750) as the focal moiety formed a vesicular organization in water. As the size of the hydrophilic focal MeO-PEG increased to M$\_$n/ =2,000 and 5,000, the self-organized structures became rod-type and spherical micelles, respectively. Our observation of multiple morphologies for amide dendrons is in good agreement with previous reports that indicated that the micellar structures changed from vesicles to rod-types and then to spheres upon increasing the size of the hydrophilic moiety of the amphiphiles.

Higher Order Polymer Architectures Containing Ethylene and Functionalized Comonomers

  • Bazan, Guillermo;Diamanti, Steve;Coffin, Robert;Hotta, Atsushi;Khanna, Vikram;Fredrickson, Glenn;Kramer, Ed
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.156-157
    • /
    • 2006
  • Quasi-living polymerization conditions for the copolymerization of ethylene and functionalized norbornenes can be achieved by using an initiator system comprising $[N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)-propanamidato-{\kappa}^2N,O]Ni({\Box}^1-CH_2Ph)(PMe_3)\;and\;Ni(COD)_2$. It is possible with this polymerization system to obtain block-copolymer and tapered structures. The latter form microdomains similar to those of standard block co-polymers. The mechanism of the reaction will also be discussed.

  • PDF

Supramolecular Nanomaterials Derived from Self-Assembly of Dendritic Building Blocks

  • Park, Chi-Young;Lee, Sang-Wha;Lim, Ji-No;Lim, Moon-Seob;Kim, Chul-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.91-92
    • /
    • 2006
  • The fine-tuned dendrons provide unique supramolecular self-assemblies in various environments such as in water, organic media, and solid-liquid interfaces. They form nanotubes, vesicles, thin films, columns, lamellar nanoribbons depending on the condition of self-assembly process. Unique characteristics of self-assembly of the amide dendrons are described. In addition, elucidation of the structural correlation between the building blocks and the assemblies, stabilization of assembled structure, and transformation of supramolecular assemblies by using external stimuli. Particular emphasis is placed on the formation of cyclodextrin-covered organic nanotubes derived from self-assembly of amide dendrons and their supramolecular transformation. Finally, unique biosensory characteristics of the self-assembled nanotubes will be discussed.

  • PDF

Improved Performance in Polymer/Polymer Solar Cells

  • Kim, Young-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1129-1129
    • /
    • 2009
  • Here the improved performance of polymer/polymer solar cells, which are of importance to achieve real plastic solar cells in the near future, is reported. First, the progress in polymer/polymer solar cells is briefly reviewed and then the limiting factors are discussed in terms of charge transport.

  • PDF

Synthesis and Etch Characteristics of Organic-Inorganic Hybrid Hard-Mask Materials (유-무기 하이브리드 하드마스크 소재의 합성 및 식각 특성에 관한 연구)

  • Yu, Je-Jeong;Hwang, Seok-Ho;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1993-1998
    • /
    • 2011
  • Semiconductor industry needs to have fine patterns in order to fabricate the high density integrated circuit. For nano-scale patterns, hard-mask is used to multi-layer structure which is formed by CVD (chemical vaporized deposition) process. In this work, we prepared single-layer hard-mask by using organic-inorganic hybrid polymer for spin-on process. The inorganic part of hard-mask was much easier etching than photo resist layer. Beside, the organic part of hard-mask was much harder etching than substrate layer. We characterized the optical and morphological properties to the hard mask films using organic-inorganic hybrid polymer, and then etch rate of photo resist layer and hard-mask film were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful hard-mask film to form the nano-patterns.

Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesive thermogelling polymer

  • Cho, Ik Sung;Oh, Hye Min;Cho, Myeong Ok;Jang, Bo Seul;Cho, Jung-Kyo;Park, Kyoung Hwan;Kang, Sun-Woong;Huh, Kang Moo
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.249-258
    • /
    • 2018
  • Background: Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. Methods: Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC. The degree of thiolation of the thiolated HGCs (SH-HGCs) was controlled in the range of 5-10% by adjusting the feed molar ratio. The structure of the chemically modified polymers was characterized by $^1H$ NMR and ATR-FTIR. The sol-gel transition, mucoadhesiveness, and biocompatibility of the polymers were determined by a tube inverting method, rheological measurements, and in vitro cytotoxicity tests, respectively. Results: The aqueous solution (4 wt%) of HGC with approximately 33% substitution showed a sol-gel transition temperature of approximately $41^{\circ}C$. SH-HGCs demonstrated lower sol-gel transition temperatures ($34{\pm}1$ and $31{\pm}1^{\circ}C$) compared to that of HGC due to the introduction of thiol groups. Rheological studies of aqueous mixture solutions of SH-HGCs and mucin showed that SH-HGCs had stronger mucoadhesiveness than HGC due to the interaction between the thiol groups of SH-HGCs and mucin. Additionally, we confirmed that the thermogelling properties might improve the mucoadhesive force of polymers. Several in vitro cytotoxicity tests showed that SH-HGCs showed little toxicity at concentrations of 0.1-1.0 wt%, indicating good biocompatibility of the polymers. Conclusions: The resultant thiolated hexanoyl glycol chitosans may play a crucial role in mucoadhesive applications in biomedical areas.