• Title/Summary/Keyword: Organic pollutants

Search Result 790, Processing Time 0.031 seconds

Material Analysis and Conservation Treatment of Sangryangmun in Jinnamgwan, Yeosu (여수 진남관 상량문의 재질분석 및 보존처리)

  • Imn, Se Yeon;Yu, Ji A;Lee, Jae Sung;Jeong, Hee Won
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.213-224
    • /
    • 2020
  • This research conducted a component analysis and conservation treatment of "Sangryangmun," a material which had been written in 1965 and was discovered during the repair project for "Jinnamgwan" in Yeosu. The "Sangryangmun" has been stored in a cylindrical metal storage; however, defects, discolorations, hardening, and damages caused by pollutants were found. Based on the XRF analysis, rust in the cylindrical metal storage, which was made of Cu, was stuck on the surface of the "Sangryangmun". Using FT-IR and Pyrolysis-GC/MS analyses, carbonyl and compounds of fatty acids were detected; the organic material on the surface of the "Sangryangmun" was identified to have belonged to oil-based components. Therefore, it was presumed that the bast fibers of a mulberry was used in the paper. To determine the conservation materials, component analysis, condition survey, and preliminary test on adhesives were conducted. Moreover, the missing parts and partial linings were filled using mulberry-fiber paper, methyl cellulose, etc.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Sedimentary Geochemical Characteristics and Environmental Impact of Sediments in Tamjin River and Doam Bay (탐진강 및 도암만 지역 퇴적물의 퇴적지구화학적 특성과 환경영향)

  • Hong, Jin-Taek;Na, Bum-Soo;Kim, Joo-Yong;Koh, Yeong-Koo;Youn, Seok-Tai;Shin, Sang-Eun;Kim, Hai-Gyoung;Moon, Byoung-Chan;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.393-405
    • /
    • 2007
  • To examine the sedimentary geochemical characteristics of sediment in the Tamjin River and Doam bay, the analysis was conducted, using the sample obtained in February 2000, on the grain size and the contents of metallic elements and organic carbon. The factors that influence the geochemical behavior of metallic elements in the surface sediment are grain size, organism, surrounding soil and $CaCO_3$. To find out the pollution level of metallic elements, the enrichment factor (EF) and the index of geoaccumulation ($I_{geo}$) were researched. The majority of metallic elements sustain their values in natural state. The elements such as K, Ba, Zr, etc. appear to be rich in some places. The EF and $I_{geo}$ of P, Cu, Zn, and Pb, which belong to toxic heavy metals, are partly related with man-made pollution. P and Cu have a high EF, Pb has a high $I_{geo}$ and Zn is high in both EF and $I_{geo}$. The low contents of P and Cu are not likely to be related with the pollution of water environment. However, given the development of relative pollution, the research and the management regarding the pollutants are needed. Because Pb, naturally enriched by geological characteristics, has a large influence on water environment along with Zn, the adequate measures against man-made pollution should be worked out.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Investigation of Resiudal Organochlorine Pesticides in Green Perilla (Perilla frutescens var. japonica Hara) Greenhouse Soil and Its Leaves (들깨 생산단지 시설재배지 중 잔류성유기염소계 농약류 잔류량 조사)

  • Lim, Sung-Jin;Oh, Young-Tak;Ro, Jin-Ho;Yang, Ji-Yeon;Choi, Geun-Hyoung;Ryu, Song-Hee;Moon, Byeong-Chul;Park, Byung-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • This study was conducted to investigate residual organochlorine pesticides in green house soil and green perilla leaves. Extraction and clean-up method were developed using the modified QuEChERS method for residual organochlorine pesticides (ROCPs) in soil and green perilla leaves. Recovery and limit of quantitation (LOQ) of ROCPs in greenhouse soil and green perilla leaves were 76.3-113.4 and 79.4-107.3%, 0.03-0.24 and $0.33-0.50{\mu}g/kg$, respectively. Detected ROCPs in greenhouse soil were dieldrin and endosulfan sulfate, the residue were 1.6-9.2 and $22.0-87.8{\mu}g/kg$, respectively. But two pesticides in all green perilla leaf samples were not detected. These results showed that ROCPs residue in greenhouse soil was lower than the level of bioaccumulation occurring.

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste (폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화)

  • Seo, Ji Hae;Kim, Namgyu;Park, Munsik;Lee, Sunkyung;Park, Donghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

Coliform Pollution Status of Nakdong River and Tributaries (낙동강수계 본류와 유입지천의 대장균군 오염도)

  • Lee, Hae-Jin;Park, Hae-Kyung;Lee, Jae Hak;Park, A Reum;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The aim of this study was to analyze spatial and temporal patterns of bacterial pollution levels and the relationship between bacterial pollutants and environmental parameters at the main stream and tributaries of Nakdong River. Water quality data including total coliform and fecal coliform were compiled from a total of 50 monitoring sites (30 at the main stream and 20 at the tributaries) along with rainfall and discharge data for three consecutive years from 2012 to 2014. During the study periods, the geometric mean values of total coliforms and fecal coliforms in the main stream were 74 (22~465) CFU/100 mL and 8 (3~42) CFU/100 mL, respectively. The geometric mean values of total coliforms and fecal coliforms in the tributaries were 275 (36~5,145) CFU/100 mL and 6 (1~1,352) CFU/100 mL, respectively. High concentrations of fecal coliforms were observed at Gumi (M 10), Hyeonpung (M 19), Hapcheon (M 23), and Namji (M 25) in the main stream, whereas Gamcheon (T 6), Bakcheon (T 7), Geumho-gang (T 8), and Gyeseongcheon (T 16) were identified as pollution hot spots in the tributaries. Although bacterial pollution levels showed complex behavior across monitoring sites and time, the highest coliform concentrations were routinely observed in the monsoon season between July and September of each year, indicating that the pollution levels were strongly dependent on precipitation in addition to other physiochemical parameters. Statistically significant correlations were found between fecal coliform concentrations and precipitation (r=0.403, p<0.01), followed by SS (r=0.425, p<0.01), nutrient TP (r=0.388, p<0.01), organic matter COD (r=0.322, p<0.01), and PO4-P (r=0.317, p<0.01) in the main stream in the order of correlation coefficient from high to low.

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.

Distribution of Persistent Organic Pollutants (POPs) in Different Sizes of Particles in the Ambient Air of the Pyeongteak Area (평택지역 대기 중 먼지 입경별 잔류성유기오염물질 분포특성 연구)

  • Kim, Dong-Gi;Woo, Jung-Sik;Kim, Yong-Jun;Jung, Hye-Eun;Park, Ju-Eun;Cho, Duck-Hee;Moon, Hee-Chun;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.192-203
    • /
    • 2020
  • Objectives: The concentration distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenlys (dl-PCBs), and polycyclic aromatic hydrocarbons (PAHs) in fine particles were investigated to provide basic data on POP behavior and composition analysis. Methods: The concentrations of PCDD/Fs, dl-PCBs, and PAHs by particle size were evaluated for TSP, PM10, and PM2.5. Also, fine dust component analysis and factor analysis were performed to identify the source of PCDD/Fs. Results: The particle size distribution was found to account for 24.3% of >10 ㎛, 14.5% of 2.5-10 ㎛, and 61.2% of <2.5 ㎛. The average contributions of coarse particles (>2.5 ㎛) and fine particles (<2.5 ㎛) were PCDD/Fs 67%, dl-PCBs 66%, benzo (a) pyrene 83% and PAHs 84%, and the contributions of fine particles (<2.5 ㎛) were higher than coarse particles (>2.5 ㎛). However, the contributions of coarse particles increased in April to September with higher temperatures, while those of fine particles increased in February to March with lower temperatures. Conclusions: Low chlorinated (4Cl-5Cl) PCDD/Fs were more adsorbed compared to coarse particles due to the influence of pollutant migration from particulate to gas phase according to temperature rise, whereas high chlorinated (6Cl-8Cl) PCDD/Fs were more adsorbed compared to fine particles. PCDD/Fs sources were assessed to be major sources of emissions, such as incineration facilities and/or open burning.

Application of Poultry Industry Using Methods of Environmental Management - A Study on Decreasing Soluble Metals from Poultry Litter with Chemical Additives - (환경경영 기법을 이용한 가금산업에 적용(I) - 화학제재를 첨가한 깔짚으로부터 수용성 중금속 저감에 관한 연구를 중심으로 -)

  • Choi, In-Hag;Choi, Sun;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1437-1442
    • /
    • 2009
  • Recent studies have shown that alum addition to litter results in many environmental and economic advantages, such as reductions in metal runoff, lower ammonia emission and improved poultry performance. However, no research has been conducted to evaluate the effects of different types of alum on soluble metals in poultry litter. The objective of this study was conducted to investigate changes in soluble metal from poultry litter with different types of aluminum sulfate (alum) under laboratory condition. The treatments used in this study, which were mixed in the upper 1 cm of litter or sprayed onto the litter surface, were 4 g alum, 8 g alum, 8.66 g liquid alum, 17.3 g liquid alum, 11.2 g A7 (high acid alum), and 22.4 g A7 (high acid alum)/100 g litter. Applying different types of alum to poultry litter reduced (P<0.05) concentrations of soluble Fe (9 to 54%), Cu (9 to 49%) and Zn (11 to 40%), relative to untreated litter, whereas it increased Ca and Mg (P<0.05). Mean soluble Fe and Cu levels in poultry litter from different types of alum decreased in the order: 22.4 g A7 (54% and 49%) > 17.3 g liquid alum (48% and 42%) > 8 g alum (48% and 31%) > 4 g alum (28% and 10%) > 8.6 g liquid alum (10% and 9%) > 11.2 g A7 (8.6% and 9%). Additionally, the high reduction in soluble Zn concentration was 4 g alum (40%), followed by 8 g alum (26%), 22.4 g A7 (25%), 17.3 g liquid alum (23%), 8.66 g liquid alum (18%), and 11.2 g A7 (11%), respectively. In conclusion, the current studies suggest that treating poultry litter with different types of alum can be applied to reduce soluble metal (Fe, Cu, and Zn) and to develop a production to merchandise for poultry litter that would result in reduction in pollutants from these materials. Furthermore, in order to improve environmental management in the poultry industry, the use of alum, liquid alum and high acid alum all should be provided a valid means of reducing negative environmental impact.