• Title/Summary/Keyword: Organic photovoltaic cells

Search Result 132, Processing Time 0.023 seconds

Stability of an improved optimization iterative algorithm to study vibrations of the multi-scale solar cells subjected to wind excitation using Series-Fourier algorithm

  • Jing Pan;Yi Hu;Guanghua Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.45-61
    • /
    • 2024
  • This research explores the domain of organic solar cells, a photovoltaic technology employing organic electronics, which encompasses small organic molecules and conductive polymers for efficient light absorption and charge transport, leading to electricity generation from sunlight. A computer simulation is employed to scrutinize resonance and dynamic stability in OSCs, with a focus on size effects introduced by nonlocal strain gradient theory, incorporating additional terms in the governing equations related to displacement and time. Initially, the Navier method serves as an analytical solver to delve into the dynamics of design points. The accuracy of this initial step is verified through a meticulous comparison with high-quality literature. The findings underscore the substantial impact of viscoelastic foundations, size-dependent parameters, and geometric factors on the stability and dynamic deflection of OSCs, with a noteworthy emphasis on the amplified influence of size-dependent parameters in higher values of the different layers' thicknesses.

Photovoltaic Properties in $CuPc/C_{60}$ heterojunction Structure ($CuPc/C_{60}$ 이종접합을 이용한 광기전 특성)

  • Kim, S.K.;Lee, H.D.;Huh, S.W.;Chung, D.H.;Oh, H.S.;Lee, W.J.;Lee, J.U.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.65-68
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of ITO/PEDOT:PSS/CuPc/$C_{60}$/BCP/Al. The PEDOT:PSS layer is made by spin coating. and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light. we have obtained a value of $V_{oc}$=0.358V and $J_{sc}$=0.338mA/$cm^2$. A fill factor and efficiency are about 0.271 and 0.033%, respectively. A 500W xenon lamp(ORIEL) was used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

Diode Equivalent Parameters of Solar Cell

  • Iftiquar, Sk Md;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.107-111
    • /
    • 2015
  • Current characteristic curve of an illuminated solar cell was used to determine its reverse saturation current density ($J_0$), ideality factor (n) and resistances, by using numerical diode simulation. High efficiency amorphous silicon, heterojunction crystalline Si (HIT), plastic and organic-inorganic halide perovskite solar cell shows n=3.27 for a-Si and n=2.14 for improved HIT cell as high and low n respectively, while the perovskite and plastic cells show n=2.56 and 2.57 respectively. The $J_0$ of these cells remain within $7.1{\times}10^{-7}$ and $1.79{\times}10^{-8}A/cm^2$ for poorer HIT and improved perovskite solar cell respectively.

Perovskite Solar Cells through Application of Hole Transporting Layers based on Vacuum Thermal Evaporation (진공 열 증착 기반의 정공수송층 적용을 통한 페로브스카이트 태양전지)

  • Kim, Hye Seung;Song, Myoung Hoon
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2022
  • In this study, we investigate organic-inorganic halide perovskite solar cells with a vacuum thermal evaporated hole transporting layer (NPB/MoO3-x). By replacing solution process based Spiro-MeOTAD with vacuum thermal evaporation based NPB/MoO3-x, a thin hole transporting layer was implemented. In addition, parasitic absorption that may occur during the doping process was eliminated by excluding solution process doping. In a solar cell with a thin vacuum thermal evaporated hole transporting layer, the short-circuit current density (Jsc) increased to 23.93 mA/cm2, resulting in the highest power converstion efficiency (PCE) at 18.76%. Considering these results, it is essential to control the thickness of hole transporting layer located at the top in solar cell configuration.

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells (UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화)

  • Sujin Cho;Jae-Keun Hwang;Dowon Pyun;Seok Hyun Jeong;Solhee Lee;Wonkyu Lee;Ji-Seong Hwang;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

Photovoltaic Effects of Exciton Blocking Layer and Electrodes in Organic Semiconductor $CuPc/C_{60}$ ($CuPc/C_{60}$을 이용한 유기 광기전 소자에서 엑시톤 억제층과 전극 변화에 따른 광기전 특성 연구)

  • Hur, S.W;Oh, H.S.;Lee, W.J.;Lee, J.U.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.112-115
    • /
    • 2004
  • Photovoltaic effects in $CuPc/C_{60}$ heterojunction structure have been studied depending on thickness of exciton blocking layer(BCP) and electrodes. Bare ITO and polymer coated electrode(PEDOT:PSS) were used as an anode, and Al, Ca/Al, Mg/Al, LiF/Al, and LiAl were used as a cathode. Photovoltaic parameters depending on BCP layer thickness from 0 to 60 nm and electrodes having different work function were measured using Keithley 236 source-measure unit and a 500W xenon lamp (ORIEL 66021). We have seen that the BCP layer thickness severely affects on the performance of photovoltaic cells.

  • PDF

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

PEDOT:PSS Thin Films with Different Pattern Structures Prepared Using Colloidal Template

  • Yu, Jung-Hoon;Lee, Jin-Su;Nam, Sang-Hun;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.254-260
    • /
    • 2014
  • Organic solar cells have attracted extensive attention as a promising approach for cost-effective photovoltaic devices. However, organic solar cell has disadvantage of low power conversion efficiency in comparison with other type of solar cell, due to the recombination ratio of hole and electron is too large in the active layer. Thus we have change the surface structure of PEDOT:PSS layers to improve the current density by colloidal lithography method using various-size of polystyrene sphere. The two types of coating method were applied to fabricate the different pattern shape and height, such as spin coating and drop casting. Using the organic solvent, we easily eliminate the PS sphere and could make the varied pattern shapes by controlling the wet etching time. Also we have measured the electrical properties of patterned PEDOT:PSS film to check whether it is suitable for organic photovoltaics.

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).