• Title/Summary/Keyword: Organic photovoltaic

Search Result 203, Processing Time 0.033 seconds

Frequency response of Photovoltaic Cell using ZnPc (ZnPc를 이용한 유기태양전지의 주파수 응답 특성)

  • Ahn, Joon-Ho;Kim, Ho-Sik;Park, Jae-Joon;Lee, Won-Jae;Jang, Kyung-Uk;Seo, Dae-Sik;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.285-286
    • /
    • 2005
  • Organic photovoltaic properties were studied in ZnPc/$C_{60}$ heterojunction structure by varying the organic layer thicknesses and exiton blocking layer(EBL). Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit, a 500W xenon lamp (ORIEL 66021) for a light source and Agilent 4294A impedance analyzer in the range of 40 Hz $\sim$ 1 MHz. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained and frequency response such as electrical conductance.

  • PDF

New Low-Band Gap 2D-Conjugated Polymer with Alkylthiobithiophene-Substituted Benzodithiophene for Organic Photovoltaic Cells

  • Park, Eun Hye;Ahn, Jong Jun;Kim, Hee Su;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • Two conjugated semiconducting copolymers consisting of 4,7-bis(4-(2-ethylhexyl)-2-thiophene)-2,1,3-benzothiadiazole (DTBT) and benzo[1,2-b:4,5-b']dithiophene with 5-(2-ethylhexyl)-2,2'-bithiophene (BDTBT) or 5-(2-ethylhexylthio)- 2,2'-bithiophene (BDTBT-S) were designed and synthesized as donor materials for organic photovoltaic cells (OPVs). Alkylthio-substituted PBDTBT-S-DTBT showed a higher hole mobility and lower highest occupied molecular orbital (HOMO) energy level (by 0.08 eV) than the corresponding alkyl-substituted PBDTBT-DTBT. An OPV fabricated using PBDTBT-S-DTBT showed higher VOC and JSC values of 0.83 V and 7.56 mA/cm2, respectively, than those of a device fabricated using PBDTBT-DTBT (0.74 V) leading to a power conversion efficiency of 2.05% under AM 1.5G 100 mW/cm2 illumination.

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.505-506
    • /
    • 2007
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc/$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL 14004).

  • PDF

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

Molecular Thin Films and Small-molecule Organic Photovoltaics

  • Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.63-63
    • /
    • 2011
  • In this tutorial session, the field of organic photovoltaic (OPV) cells based on small molecular weight materials will be presented. The previously reported studies on the fabrication, structure, and property of the cells as well as the molecular materials are included. Especially, the factors hampering further enhancement in the power conversion efficiency of the cells such as exciton recombination, light absorption and interfacial morphology between electron donor and acceptor layer will be discussed in detail. The recent progress in our group will also be presented. It includes typical materials and cell fabrication techniques we used as well as the studies on improving the light absorption in the electron donor layer and reducing the extinction of excitons formed by introducing the nanostructured interface between organic layers.

  • PDF

Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells

  • Kim, Solee;Kim, Young Chai;Oh, Seong-Geun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.350-356
    • /
    • 2015
  • The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and $NH_4OH$ was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.

Roll-to-Roll Barrier Coatings on PET Film by Using a Closed Drift Magnetron Plasma Enhanced Chemical Vapor Deposition

  • Lee, Seunghun;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.124-125
    • /
    • 2012
  • Korea institute of materials science (KIMS) use a linear deposition source called as a closed drift linear plasma source (CDLPS) as well as dual magnetron sputtering (DMS) to deposit SiOxCyHz films in $HMDSO/O_2$ plasma. The CDLPS generates linear plasma using closed drifting electrons and can reduce device degradations due to energetic ion bombardments on organic devices such as organic photovoltaic and organic light emission diode by controlling an ion energy. The deposited films are investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Optical emission spectroscopy (OES) is used to measure relative radical populations of dissociation and recombination products such as H, CH, and CO in plasma. And SiOx film is applied to a barrier film on organic photovoltaic devices.

  • PDF

Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative

  • Kim, Ji-Hoon;Song, Chang Eun;Kang, In-Nam;Shin, Won Suk;Zhang, Zhi-Guo;Li, Yongfang;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1356-1364
    • /
    • 2014
  • A new conjugated copolymer, poly{4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-alt-4,7- bis(5-thiophen-2-yl)-5,6-difluoro-2-(heptadecan-9-yl)-2H-benzo[d][1,2,3]triazole} (PTIPSBDT-DFDTBTz), is synthesized by Stille coupling polycondensation. The synthesized polymer has a band gap energy of 1.9 eV, and it absorbs light in the range 300-610 nm. The hole mobility of a solution-processed organic thin-film transistor fabricated using PTIPSBDT-DFDTBTz is $3.8{\times}10^{-3}cm^2V^{-1}s^{-1}$. Bulk heterojunction photovoltaic cells are fabricated, with a conventional device structure of ITO/PEDOT:PSS/polymer:$PC_{71}BM$/Ca/Al ($PC_{71}BM$ = [6,6]-phenyl-$C_{71}$-butyric acid methyl ester); the device shows a power conversion efficiency (PCE) of 2.86% with an open-circuit voltage ($V_{oc}$) of 0.85 V, a short-circuit current density ($J_{sc}$) of 7.60 mA $cm^{-2}$, and a fill factor (FF) of 0.44. Inverted photovoltaic cells with the structure ITO/ethoxylated polyethlyenimine/ polymer:$PC_{71}BM/MoO_3$/Ag are also fabricated; the device exhibits a maximum PCE of 2.92%, with a $V_{oc}$ of 0.89 V, a $J_{sc}$ of 6.81 mA $cm^{-2}$, and an FF of 0.48.

Organic photovoltaic cells using low sheet resistance of ITO for large-area applications

  • Kim, Do-Geun;Gang, Jae-Uk;Kim, Jong-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.1-5.1
    • /
    • 2009
  • Organic photovoltaic (OPV)cells have attracted considerable attention due to their potential for flexible, lightweight, and low-cost application of solar energy conversion. Since a 1% power conversion efficiency (PCE) OPV based on a single donor-acceptor heterojunction was reported by Tang, the PCE has steadily improved around 5%. It is well known that a high parallel (shunt)resistance and a low series resistance are required simultaneously to achieve ideal photovoltaic devices. The device should be free of leakage current through the device to maximize the parallel resistance. The series resistance is attributed to the ohmic loss in the whole device, which includes the bulk resistance and the contact resistance. The bulk resistance originated from the bulk resistance of the organic layer and the electrodes; the contact resistance comes from the interface between the electrodes and the active layer. Furthermore, it has been reported that the bulk resistance of the indium tin oxide (ITO) of the devices dominates the series resistance of OPVs for a large area more than $0.01\;cm^2$. Therefore, in practical application, the large area of ITO may significantly reduce the device performance. In this work, we investigated the effect of sheet resistance ($R_{sh}$) of deposited ITO on the performance of OPVs. It was found that the device performance of polythiophene-fullerene (P3HT:PCBM) bulk heterojunction OPVs was critically dependent on Rsh of the ITO electrode. With decreasing $R_{sh}$ of the ITO from 39 to $8.5\;{\Omega}/{\square}$, the fill factor (FF) of OPVs was dramatically improved from 0.407 to 0.580, resulting in improvement of PCE from $1.63{\pm}0.2$ to $2.5{\pm}0.1%$ underan AM1.5 simulated solar intensity of $100\;mW/cm^2$.

  • PDF

Hybrid polymer-quantum dot based single active layer structured multi-functional device (Organic Bistable Device, LED and Photovoltaic Cell)

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Kim, Tae-Whan;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.97-97
    • /
    • 2010
  • We demonstrate the hybrid polymer-quantum dot based multi-functional device (Organic bistable devices, Light-emitting diode, and Photovoltaic cell) with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum-dots (QDs) dispersed in a poly N-vinylcarbazole (PVK) and 1,3,5-tirs- (N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on indium-tin-oxide (ITO)/glass substrate by using a simple spin coating technique. The multi-functionality of the device as Organic bistable device (OBD), Light Emitting Diode (LED), and Photovoltaic cell can be successfully achieved by adding an electron transport layer (ETL) TPBi to OBD for attaining the functions of LED and Photovoltaic cell in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and LiF/Al electrode (band-gap engineering). Through transmission electron microscopy (TEM) study, the active layer of the device has a p-i-n structure of a consolidated core-shell structure in which semiconductor QDs are uniformly and isotropically adsorbed on the surface of a p-type polymer core and the n-type small molecular organic materials surround the semiconductor QDs.

  • PDF