• Title/Summary/Keyword: Organic phase yield

Search Result 101, Processing Time 0.024 seconds

Study on the response surface optimization of online upgrading of bio-oil with MCM-41 and catalyst durability analysis

  • Liu, Sha;Cai, Yi-xi;Fan, Yong-sheng;Li, Xiao-hua;Wang, Jia-jun
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • Direct catalysis of vapors from vacuum pyrolysis of biomass was performed on MCM-41 to investigate the effects of operating parameters including catalyzing temperature, catalyzing bed height and system pressure on the organic yields. Optimization of organic phase yield was further conducted by employing response surface methodology. The statistical analysis showed that operating parameters have significant effects on the organic phase yield. The organic phase yield first increases and then decreases as catalyzing temperature and catalyzing bed height increase, and decreases as system pressure increases. The optimal conditions for the maximum organic phase yield were obtained at catalyzing temperature of $502.7^{\circ}C$, catalyzing bed height of 2.74 cm and system pressure of 6.83 kPa, the organic phase yield amounts to 15.84% which is quite close to the predicted value 16.19%. The H/C, O/C molar ratios (dry basis), density, pH value, kinematic viscosity and high heat value of the organic phase obtained at optimal conditions were 1.287, 0.174, $0.98g/cm^3$, 5.12, $5.87mm^2/s$ and 33.08 MJ/kg, respectively. Organic product compositions were examined using gas chromatography/mass spectrometry and the analysis showed that the content of oxygenated aromatics in organic phase had decreased and hydrocarbons had increased, and the hydrocarbons in organic phase were mainly aliphatic hydrocarbons. Besides, thermo-gravimetric analysis of the MCM-41 zeolite was conducted within air atmosphere and the results showed that when the catalyst continuously works over 100 min, the index of physicochemical properties of bio-oil decreases gradually from 1.15 to 0.45, suggesting that the refined bio-oil significantly deteriorates. Meanwhile, the coke deposition of catalyst increases from 4.97% to 14.81%, which suggests that the catalytic activity significantly decreases till the catalyst completely looses its activity.

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

The Growth phase and yield difference of Kenaf(Hibiscus cannabinus L.) in reclaimed land according to the source and physical types of organic materials

  • Kang, Chan Ho;Lee, In Sok;Yoo, Young Jin;Seo, Sang Young;Choi, Kyu Hwan;Lee, Ki Kwon;Na, Young Eun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.369-369
    • /
    • 2017
  • To improve the reclaimed land soil, we put organic materials (Chopped kenaf, decomposed rice hull, rice straw, pellet type manure compost) into reclaimed land for 3,000 kg per 10a. As a result, EC of reclaimed soil was lowered by 58% ($1.2dS/m{\rightarrow}0.5$), content of soil organic material was risen from 6.7 g/kg to 16.0 (1.4 fold ${\uparrow}$), porosity of soil was elevated from 1.57 % to 1.31 (16.6% ${\downarrow}$), soil hardness was reduced from 20.2 mm to 17.9 (11.4% ${\downarrow}$) and plow layer soil was deepen from 19.8 cm to 26.8 (35% ${\uparrow}$). In the wake of physiochemical improvement of reclaimed soil, the growth phase of crops became better contrast to non-treatment. For example the plant height of Kenaf (Hibiscus cannabinus L.) cultivated in reclaimed land containing organic materials was lengthen by 18.8%. Especially, the improvment effect of pellet type manure compost and rice straw was more preferable. When the kenaf was cultivated in reclaimed land containing organic materials, the yield was become higher. The average yield of organic materials treatment was 9,218 kg/10a, and it was 2.1 times higher than non-treatment (4,368kg/10a). And the effective treatments to increase yields were pellet type manure compost (10,848 kg/10a, 148% ${\uparrow}$), rice straw (120% ${\uparrow}$) and chopped kenaf (95% ${\uparrow}$). To intensify the effect of physicochemical enhancement of reclaimed land soil and improving yields, we put into various physical types of organic materials (pellet type, liquid type, powdered type). The most effective organic materials type for enhancement of physicochemical properties (EC of reclaimed soil was lowered, content of soil organic material was risen, porosity of soil was elevated, soil hardness was reduced, plow layer soil was deepen) was pellet. And source to maintain better growth phase and get more yield were liquid and pellet types. When we used pellet type organic material, the plant height of kenaf was lengthen by 41% in comparison with non-treatment and yield was more than 122% more. And also liquid type could get more yield (by 127%) and growth phase (by 38%)

  • PDF

Direct route to high yield synthesis of metal nanoparticles for printable electronic devices

  • Kim, Dong-Hun;Lee, Gwi-Jong;Lee, Yeong-Il;Jeon, Byeong-Ho;Choe, Jun-Rak;Seo, Yeong-Gwan;Kim, Tae-Hun;Gang, Seong-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.1-14.1
    • /
    • 2009
  • We found a high yield synthetic route to organic-soluble metal nanoparticles in the concentrated organic phase. The organic phase contains metal salt, amines, fatty acids, nonpolar solvent, and reducing agent. Even using only generic chemicals, organic-soluble silver and copper nanoparticles could be easily obtained by this simple and rapid reaction scheme at large scale. The hydrocarbon-protected metal nanoparticles showed excellent dispersion properties and were successfully printed onto polymer substrates. The printed pattern was heated at $200^{\circ}C$, which showed very low specific electrical resistance (< 10 uOhm$\cdot$cm), sufficient for conducting line of various printable devices.

  • PDF

Improvement of Hydrocarbon Recovery by Two-Stage Cell-Recycle Extraction in the Cultivation of Botryococcus braunii

  • An, Jin-Young;Sim, Sang-Jun;Kim, Byung-Woo;Lee, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.932-937
    • /
    • 2004
  • In situ extraction by organic solvent was studied in order to improve the recovery yield of hydrocarbon from the culture of Botryococcus braunii, a green colonial microalga. When the solvent mixture of octanol as an extractive solvent and n-octane as a biocompatible solvent was added to a two-phase column, the algal growth was seriously inhibited, even at a low concentration of polar octanol. Therefore, a two-stage cell-recycle extraction process was proposed to improve the contact area between the organic phase and the aqueous phase. The hydrocarbon recovery with in situ cell-recycle extraction showed a three-fold increase (57% of cell) in yield over that with two-phase extraction. In addition, over 60% of the hydrocarbon could be recovered without serious cell damage by downstream separation when this process was applied to the culture broth after batch fermentation.

Effect of Nitrogen Source on the Growth of Azotobacter vinelandii UWD and Production of Biodegradable Plastics in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자 생산에 대한 질소원의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.626-630
    • /
    • 1998
  • Ammonium limitation did not promote ply(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production of Azotobacter vinelandii UWD. In acid phase, ammonium limitation during utilization of propionic acid and butyric acid led to 35% decrease in product yield. In glucose phase, both biomass yield and polymer yield decreased about 22% under ammonium limitation. However, in nitrogen-fixing culture glucose was consumed 25% faster and the final PHBV wt% decreased slightly. Under nitrogen limitation a portion of the carbon sources was used fro nitrogen fixation rather than biomass and polymer formation, resulting in a decrease in biomass yield and polymer yield.

  • PDF

Effect of Organic Loading Rate and Hydralic Retention Time on the Volatile Fatty Acid Production in 2- Step Anaerobic Fermentation System of Swine Wastes (돈분의 2단계 혐기발효시 산생성 단계에서의 유기물 부하율과 체류시간에 따른 휘발성지방산의 생산량)

  • 김범석;이상락;맹원재
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1998
  • It is known that the anaerobic fermentation of organic matter (OM) is divided into 2 phases, acidogenic phase in which OM is digested into volatile fatty acid (VFA), and methanogenic phase where the produced VFA is converted to CH4 and CO2. In a natural fermenting procedure, these 2 phases occur at the same time. However the total production of end products (methane) may be limited if these 2 phases occur at the same time. This is believed to be due to the difference in growth rate, substrate-utilizing efficiency and favorable environment for each microbes (acidogens and methanogens), involved in each phase. It is therefore suggested for the maximum recycling of organic waste (such as animal waste) through providing 2 different steps in fermenting procedure, acidogenic phase and methanogenic phase, in each case the activity of involved microbes can be maintained at the maximum level. The results obtained from these experiments are summarized as follows : The loading rates of swine waste were made through 2.5, 5 and 10 gVS / l / d to identify its acidogenic fermenting character in this study. The VFA yield was maximized at 10 gVS / l / d of loading rate. On the basis of this study was executed to identify the optimum HRT of 1, 2 and 4 days at 10 gVS / l / d of loading rate in acidogenic phase. The maximum VFA yield was obtained at 1 days of HRT.

  • PDF

Production of L-Tryptophan by Enzymatic Processes (효소공정에 의한 트립토판 생산)

  • 이인영;안경섭;김의환;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.73-78
    • /
    • 1992
  • - Enzymatic synthesis of L-tryptophan(Trp) using E. coli tryptophanase has been investigated. In order to reduce the substrate inhibition by indole and to increase the product yield of L-tryptophan three different approaches have been made in this work. First, indole was intermittently fed to the reaction mixture in order to control the indole concentration at lower level. When 15 mM of indole was used as a total amount of substrate, conversion yield of 80% has been obtained with intermittent feeding while only 20% of indole was converted into L-tryptophan by conventional batch operation, The second method employed in this work was the use of cyclohexane-phosphate buffer organic two-phase system. In this system, indole was mainly partitioned into the organic-solvent phase and therefore substrate inhibition was expected to be reduced. L-Tryptophan production in organic two-phase system was, however, unexpectedly lower than that obtained in aqueous buffer solution. As a third method cyclodextrins have been added to the aqueous reaction mixture. It was found that the addition of $\beta$-cyclodextrin enhanced the tryptophan synthesis noticeably while $\alpha$-cycfodextrin showed little effect on tryptophan production.

  • PDF

Production of enantiopure epoxides by yeast epoxide hydrolase using a two-phase membrane bioreactor (한국생물공학회 정기총회 및 연구논문발표회 발표논문)

  • Choe, Won-Jae;Choe, Cha-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.145-148
    • /
    • 2000
  • Large-scale resolution of epoxides by the yeast Rhodotorula glutinis was demonstrated in an aqueous/organic two-phase cascade membrane bioreactor. Due to the chemical instability and low solubility of epoxides in aqueous phases, an organic solvent was introduced into the reaction mixture in order to enhance resolution of epoxide. A cascade hollow-fiber membrane bioreactor was used (i) to minimize the toxicity of organic solvents towards the epoxide hydrolase of Rhodotorula glutinis, and (ii) to remove inhibitory amounts of formed diol from the yeast cell containing aqueous phase. Dodecane was selected as a suitable solvent and 1,2-epoxyhexane as a model substrate. By use of this membrane bioreactor, highly concentrated (0.9 M in dodecane) enantiopure (>98% ee) (S)-1,2-epoxyhexane (6.5 g, 30% yield) was obtained from its racemic mixture.

  • PDF

Hot Atom Chemistry of Aromatic Halides : Scavenger, Temperature and Oxygen Effect (芳香族할라이드의 Hot Atom Chemistry 스캐벤져, 溫度 및 酸素의 效果)

  • Choi, Jae-Ho;Park, Yong-Chan;Son, Mi-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.78-80
    • /
    • 1965
  • The organic yields(i.e., fraction of nuclear events resulting in organic compound formation) of the radioactive neutron capture reactions of the halogens in purified aromatic halides have been determined in the liquid and solid state, in the presence of scavenger, elemental halogen for thermal atoms, and in the presence of oxygen. Among the important results are; (1) organic yields of the halides are due in part to hot processes and in part to thermal processes; (2) temperature (from liquid state to solid state); (3) the organic yield of chlorobenzene is the same in the solid phase as in the liquid phase whereas the yields of the bromo-and iodobenzene are higher in the solid.

  • PDF