• 제목/요약/키워드: Organic nitrogen

검색결과 2,525건 처리시간 0.027초

유입부하가 DEPHANOX 및 Modified-DEPHANOX 공정에 미치는 영향 (Effect of Loading Rate in the Operation of DEPHANOX and Modified-DEPHANOX Processes)

  • 류홍덕;민경국;이상일
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.24-31
    • /
    • 2004
  • This study was initiated to evaluate the efficiencies of DEPHANOX and Modified-DEPHANOX, which were devoloped to enhance nitrogen removal efficiency in municipal wastewater treatment. In the results, removal efficiency of organic matters was not affected much by increased loading rate of organic matters which is contained in influent. The nitrogen removal efficiencies according to the loading rate of influent TN was decreased drastically in conditions of over $0.2kg/m^3{\cdot}day$, which is T-N loading rate, and the DEPHANOX process was affected more sensitively than the M-DEPHANOX was. When the temperature was altered from $25^{\circ}C$ to $16^{\circ}C$ at HRT 6hrs, the removal efficiency of ammonia nitrogen was still over 90% and it was concluded that both DEPHANOX and M-DEPHANOX were strong enough to endure temperature variation. Moreover, both processes showed over 90% in ammonia removal efficiencies in over HRT 5hrs, so it was concluded that they were strong in HRT variation. M-DEPHANOX process showed a higher value than DEPHANOX did in T-N removal efficiency to the extent of 4~21 %, which resulted from differency of denitrification rates and the biosorption efficiency of organic matter in both processes. In the condition of HRT less than 4hrs, concentrations of ammonia nitrogen contained in effluents and nitrification reactors, might be sensitively affected by biosorption efficiency of organic matters in first separation tank. In the effect of effluent nitrate concentration in phosphorus removal, the more effluent nitrate concentration was decreased, the more phosphorus removal efficiency was increased. This result is related to the decrease of concentration of effluent nitrate which resulted from nitrification inhibition by decreased HRT.

강원도 고성지역에서 산불이 소나무림 토양의 영양염류에 미치는 영향 (Effects of Forest Fire on Soil Nutrients in Pine Forests in Kosong Kangwon Province)

  • Mun, Hyeong-Tae;Choung, Yeon-Sook
    • The Korean Journal of Ecology
    • /
    • 제19권5호
    • /
    • pp.375-383
    • /
    • 1996
  • Effects of forest fire on soil nutrients in pine forests were studied in Dosong, Kangwon Province in Korea. Soil samples were collected from burned sites and unburned sites (control) at Kusungri, Sampori and Wunbongri. Soil pH in burned sites was higher than that in unburned sites. Soil organic matter did not differ significantly between the burned and unburned sites. Concentrations of available phosphorus in burned soils were about 3 times higher than those in unburned sites. Also, concentrations of ammonium nitrogen were markedly increased in burned sites contrary to those of nitrate nitrogen. Total nitrogen, however, showed no significant difference between the sites. Concentrations of cations, calcium and magnesium, in burned sites were also significantly increased. Thus, even though forest fire removed the aboveground biomass of pine forests, inorganic nutrients added from ash may play a great role for growth of sprouts and seedlings after forest fire.

  • PDF

육상양식장 배출수내 생물학적 질소처리시 수리학적 체류시간의 영향 (Effect of Hydraulic Retention Time on Biological Nitrogen Removal in Land-based Fish Farm Wastewater)

  • 박노백
    • 한국수산과학회지
    • /
    • 제50권3호
    • /
    • pp.250-256
    • /
    • 2017
  • This study investigated the removal efficiency of organic matter and nitrogen from fish farm effluent by hydraulic retention time (HRT) using an upflow biological filter (ANR system) reactor. The recycling time and influent flow in the reactor were controlled to 14.8, 7.4, 5.5 and 3.2 h to evaluate HRT. In addition, each reactor was coupled to a fixed bed upflow filter charged with media. The results showed that removal efficiency was ${\geq}95%%$ with an HRT of 5.5 h, and nitrification efficiency was reduced to 81% with an HRT of 3.2 h, although nitrification efficiency temporarily decreased due to the shock load as HRT decreased. Total nitrogen removal rate was also reduced to about 65% with an HRT of 3.2 h, which was considered a washout effect of nitrifying and denitrifying microorganisms by increasing the shearing force to the filter media, which decreased organic matter and nitrogen removal efficiency.

연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구 (A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor)

  • 박민정;김동석
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

S5 Lipase : An Organic Solvent Tolerant Enzyme

  • Zaliha Raja Noor;Rahman Raja Abdul;Baharum Syarul Nataqain;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.583-590
    • /
    • 2006
  • In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of pro-duction were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions ($Mg^{2+}$) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, $Na^+$, was found to stimulate the production of S5 lipase.

Near Infrared Reflectance Spectroscopy(NIRS)에 의한 음식물 쓰레기 퇴비 분석에 관한 연구 (Analysis on Food Waste Compost by Near Infrared Reflectance Spectroscopy(NIRS))

  • 이효원;길동용
    • 한국유기농업학회지
    • /
    • 제13권3호
    • /
    • pp.281-289
    • /
    • 2005
  • In order to find out an alternative way of analysis of food waste compost, the Near Infrared Reflectance Spectroscopy(NIRS) was used for the compost assessment because the technics has been known as non-detructive, cost-effective and rapid method. One hundred thirty six compost samples were collected from Incheon food waste compost factory at Namdong Indurial Complex. The samples were analyzed for nitrogen, organic matter (OM), ash, P, and K using Kjedahl, ignition method, and acid extraction with spectrophotometer, respectively. The samples were scanned using FOSS NIRSystem of Model 6500 scanning mono-chromator with wavelength from $400\~2,400nm$ at 2nm interval. Modified partial Least Squares(MPLS) was applied to develop the most reliable calibration model between NIR spectra and sample components such as nitrogen, ash, OM, P, and K. The regression was validated using validation set(n=30). Multiple correlation coefficient($R^2$) and standard error of prediction(SEP) for nitrogen, ash, organic matter, OM/N ratio, P and K were 0.87, 0.06, 0.72, 1.07, 0.68, 1.05, 0.89, 0.31, 0.77, 0.06, and 0.64, 0.07, respectively. The results of this experiment indicates that NIRS is reliable analytical method to assess some components of feed waste compost, also suggests that feasibility of NIRS can be Justified in case of various sample collection around the year.

  • PDF

잣나무엽(葉)의 초기(初期) 분해과정(分解過程)에 있어서 무기태(無機態) 질소(窒素) 및 CO2 방출속도(放出速度)의 변화(變化) (Changes of Inorganic Nitrogen and CO2 Evolution Rate on the Decomposition Process of Korean White Pine Needles)

  • 이명종;한상섭;김정제
    • 한국산림과학회지
    • /
    • 제69권1호
    • /
    • pp.13-18
    • /
    • 1985
  • 잣나무의 녹엽(綠葉), 낙엽(落葉), F층(層)의 엽(葉)과 떡갈 및 굴참나무의 녹엽(綠葉)을 각각 토양(土壤)에 혼합(混合)하여 53일간 $30^{\circ}C({\pm}1)$로 항온배양(恒温培養)하는 동안 토양중(土壤中)의 무기태(無機態) 질소(窒素) 및 $CO_2$ 방출속도(放出速度)의 변화(變化)를 측정(測定)하여 다음의 결과(結果)를 얻었다. 1) 배양초기(培養初期)에는 무기태(無機態) 질소(窒素)의 유기화(有機化)로 무기태(無機態) 질소량(窒素量)의 감소(減少)가 강(強)하게 일어났고, 시간(時間)의 경과(經過)에 따라 점차 증가(增加) 하였다. 2) 혼합(混合)한 엽중(葉中)의 유기태(有機態) 질소(窒素)의 유기화속도(有機化速度)는 잣나무의 엽중(葉中) 녹엽(綠葉)에서 가장 컸으나, 굴참 및 떡갈나무의 녹엽(綠葉)보다는 작았다. 3) $CO_2$ 방출속도(放出速度)의 크기는 굴참나무녹엽(綠葉), 떡갈나무녹엽(綠葉), 잣나무녹엽(綠葉), 잣나무 낙엽(落葉), F층(層)의 잣나무엽(葉)을 혼합(混合)한 토양(土壤)의 순(順)이었고, 시간의 경과(經過)에 따라 점차 감소했다. 4) 질산태(窒酸態) 질소량(窒素量)은 점차 증가(增加)하여 배양(培養) 53일 후에, 암모니아태(態應) 질소량(窒素量)을 상회(上迴)하였다.

  • PDF

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

벼 재배 시 유기질비료의 질소 밑거름 대체량 평가 (Evaluation of Replacement Ratio of Organic Fertilizers for Basal Application of Nitrogen Fertilizer in Pot Cultivation of Rice)

  • 김명숙;김석철;박성진;이창훈
    • 유기물자원화
    • /
    • 제27권1호
    • /
    • pp.5-14
    • /
    • 2019
  • 논 조건의 포트규모에서 유기질 비료로 화학비료 밑거름량을 대체하기 위해 벼의 정조수량, 쌀 품질 기준인 단백질 함량, 토양 화학적 특성에 미치는 영향을 조사하였다. 벼 생산에 적정인 유기물함량을 지닌 토양 1에서 벼의 생산량은 다른 처리구보다 70 %, 100 %에서 높았다. 벼 생산에 적정보다 높은 유기물함량을 지닌 토양 2에서 벼의 생산량은 NPK, 유기질비료 30%, 70%, 100%, 300%에서 차이가 없었다. 쌀 품질에 대한 단백질 기준이 7 % 이하를 적용할 때 유기질비료 3종(혼합유기질비료, 혼합유박, 유기복합)의 처리구 중에서 70 %, 100 % 처리구가 쌀 품질의 단백질 기준에 적합하였다. 유기질비료 30 %, 70 %, 100 %, 300 % 처리에서 유기물 함량, 암모늄태 질소 및 전기전도도는 NPK 처리와 유사한 경향을 보였다. 이러한 결과로부터 표준 질소 밑거름 시용량의 70 ~ 100 % 수준으로 유기질 비료 3종에 대해 투입하는 것이 농경지의 적절한 양분을 유지하고 쌀의 수확량과 품질을 유지하는 좋은 방법이라 판단된다.