• Title/Summary/Keyword: Organic matter characteristics

Search Result 1,101, Processing Time 0.031 seconds

Domestic Research Trends on Fluorescent Dissolved Organic Matter in Marine Environment (해양 환경의 형광용존유기물에 관한 국내 연구 동향)

  • Kim, Jeonghyun
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.353-363
    • /
    • 2021
  • Fluorescent dissolved organic matter (FDOM) is referred to organic matter which absorbs efficiently solar radiation energy and fluorescence in the water column. The component and molecular structure of marine organic matter can be changed depending on the various substances and origins of organic matter, and then the organic matter has unique fluorescent properties. As the cutting-edge analytical techniques of optical measurement continuously developing from last few decades, a study on FDOM has been applied as a biogeochemical tracer to quantify the organic matter concentration and to investigate the behaviors and origins of organic matter. Especially, the marine environment around the Korean Peninsula is an ideal research area to study FDOM because of various oceanographic characteristics and the origins of organic matter. This study describes the general properties of FDOM and introduces the cycling and behaviors of marine organic matter based on the domestic research studies.

Distribution Characteristics of Organic Matter and Heavy Metal of Sediment in Daecheon Port (대천항 퇴적물의 유기물 및 중금속 분포 특성)

  • Shin, Woo-Seok;Lim, Ji-Yoon;Yoon, Young-Gwan
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.43-51
    • /
    • 2018
  • In order to systematically and scientifically manage the organic and heavy metals against sediment at Daecheon Port, this study conducted particle composition, organic materials and heavy metals irradiation studies of sediments. Analysis of the grain size composition of sediments in the target study area showed the distribution characteristics of the mix of sand, silt and clay. That is, Station C (Stn. C) showed superior by fine-grained sediment, Station A and B (Stn. A and B) showed superior by coarse-grained sediment. The organic matter(COD, TOC, and IL) of Stn. C was appeared to be heavily polluted more than Stn. A and B. These data for the spatial properties in sediment showed that organic matter was related positively to the sediment silt-clay content. Also, in the case of heavy metals contamination in surface sediments, Stn. C was higher than Stn. A and B. Particularly, at the Stn. C, high organic matter concentration and C/N ratio value( >10) indicated that the sediment was composed highly of land-derived organic matter. From these results, it considered that the correlation analysis among to silt-clay, organic matter and heavy metal was found to have a good interrelationship.

A Study on the Removal Characteristics of Organic matter and Bacteria with the Use of Ozone (오존을 이용한 유기물 및 세균의 제거 특성에 관한 연구)

  • Lee, Kwan-Young;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The aim of this study is to measure the removal characteristics of organic matter and bacteria with the use of ozone to reduce the problems caused by bacteria and organic matter which appear in sea-water is summer season. When the total input of ozone was $1.4mg/{\ell}O_3$, the removal rate of bacteria and E-coli from sea-water proved to be 100%. With the same input of ozone, on the other hand, the removal rate of COD turned to be relatively low, 50%, which was to the fact that sea-water consists of salt matter which is a kind of COD matter. This result supports the idea that we can keep using ozone steadily in the future to remove organic matters and bacteria from sea-water because ozone destructs relatively less salt matter in sea-water. Also, the treatment effect rate of SS, turbidity and organic matters such as $NH_3$-N, $NO_3$-N etc, was very high. As a result, we assume that the treatment of organic matter in sea-water with ozone is very effective

  • PDF

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

Characteristics of Dissolved Organic Matter(DOM) Based on Molecular Weight Fractions and Fluorescence Properties in the Downstream Nakdong River (낙동강 하류 수역에서 분자량 크기 및 형광특성을 고려한 용존유기물질 특성)

  • Ji, Hwaseong;Kim, Mihee;Lee, Youjung;Son, Heejong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.194-205
    • /
    • 2020
  • The characteristics and behavior of dissolved organic matter (DOM) were determined by analyzing the molecular weight fractions and fluorescence properties of water samples in the downstream Nakdong River. Biogeochemical water quality parameters and fluorescent dissolved organic matter (FDOM) were analyzed at five sampling points in the downstream area of the Nakdong River January-August 2019. The molecular weight fractions of the DOM were separated by the Liquid Chromatography-Organic Carbon Detection (LC-OCD). The DOM predominantly comprised humic substances, followed by the building blocks, low molecular weight neutrals and biopolymers. The hydrophobic (aromatic) and hydrophilic properties were shown as coexisting, as most of the SUVA254nm values were under four. The FDOM was characterized as humic-like (FDOMH) with allochthonous origin and protein-like (FDOMP) with autochthonous origin; the FDOMH with autochthonous origin was also identified. The FDOMH relies on the aromaticity of the allochthonous organic matter and increases during summer. The FDOMH and FDOMP, which depend on the biodegradable dissolved organic matter from phytoplankton, were highly fluorescent in winter. The allochthonous organic matter was the dominant factor contributing to the behavior of the DOM, externally introduced to the river by rainfall. The FDOM only minimally contributed to the behavior of the DOM. It can be explained as the seasonal characteristics of the DOM, varied by the source of the organic matter.

Study on the Characteristics of Livestock Wastewater Treatment by Ionized Gas (이온화가스에 의한 축산폐수 처리 특성에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • This paper was studied about the characteristics of treatment by ionized gas for livestock wastewater, aiming at the effects of ionized gas on organic matter, hydrophobic and hydrophilic organic matter in livestock wastewater when the new process of advanced oxidation process was applied for meeting the improved the quality of effluent. The organic matter within treated livestock wastewater by ionized gas was partially mineralized according to the time increasement. The $TCOD_{Mn}$ in the livestock wastewater was decreased from 840mg/L to 340mg/L when treated by ionized gas by the enhancement of time. We occupied the equations of $TCOD_{Cr}$, $SCOD_{Cr}$, $TCOD_{Mn}$ and $SCOD_{Mn}$ as to ionized gas treated time. As $TCOD_{Mn}$ increasing ionized gas treated time, the concentration did not meet the water quality, $COD_{Mn}$ 4Omg/L. So, for removing of the remaining organic matter in the efflent after ionized gas, following process is necessary. After treating the livestock wastewater by ionized gas, coagulation was considerable for organic matter removal up to regulation water quality. From UV scans of the treated livestock wastewater by ionized gas, the wastewater has low aromaticity and good colour.

Biological stability in the ozone and peroxone pretreatment systems in river water (하천수 내 생물학적 안정성에 따른 유기물 특성변화와 오존산화기반 전처리 연구)

  • Park, Se-Hee;Noh, Jin-Hyung;Park, Ji-Won;Maeng, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • Climate change is believed to increase the amount of dissolved organic matter in surface water, as a result of the release of bulk organic matter, which make difficult to achieve a high quality of drinking water via conventional water treatment techniques. Therefore, the natural water treatment techniques, such as managed aquifer recharge (MAR), can be proposed as a alternative method to improve water quality greatly. Removal of bulk organic matter using managed aquifer recharge system is mainly achieved by biodegradation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) can be used as water quality indicators for biological stability of drinking water. In this study, we compared the change of BDOC and AOC with respect to pretreatment methods (i.e., ozone or peroxone). The oxidative pretreatment can transform the recalcitrant organic matter into readily biodegradable one (i.e., BDOC and AOC). We also investigated the differences of organic matter characteristics between BDOC and AOC. We observed the decreases in dissolved organic carbon (DOC) and the tryptophan-like fluorescence intensities. Liquid chromatographic - organic carbon detection (LC-OCD) analysis also showed the reduction of the low molecular weight (LMW) fraction (15% removed, less than 500 Da), which is known to be easily biodegradable, and the biopolymers, high molecular weight fractions (66%). Therefore, BDOC consists of a broad range of organic matter characteristics with respect to molecular weight. In AOC, low molecular weight organic matter and biopolymers fraction was reduced by 11 and 6%, respectively. It confirmed that biodegradation by microorganisms as the main removal mechanism in AOC, while BDOC has biodegradation by microorganism as well as the sorption effects from the sand. $O_3$ and $O_3+H_2O_2$ were compared with respect to biological stability and dissolved organic matter characteristics. BDOC and AOC were determined to be about 1.9 times for $O_3$ and about 1.4 times for $O_3+H_2O_2$. It was confirmed that $O_3$ enhanced the biodegradability by increasing LMW dissolved organic matter.

Characteristics of Spatial and Temporal Organic Matter in the Han River Watershed (한강수계 유기물의 시·공간적 분포 특성 비교)

  • Yu, Soonju;Cho, Hangsoo;Ryu, Ingu;Son, Juyeon;Park, Minji;Lee, Bomi
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.409-422
    • /
    • 2018
  • The purpose of this study is to find the characteristics of organic matters based on the distribution and oxidation rates, as noted according to the spatial and temporal variations from 2008 to 2016. Generally speaking, the Han River system is separated into one lower course and two upper courses which are the Namhan River and Bukhan River. The seasonal factor is one of the most important causes of water quality changing in both of the upper courses as a result of a few pollution sources. The concentration of organic matter was measured as higher in the lower course into which great streams with point and non-point sources were identified. According to seasonal variations, however, the change of the organic matter in the lower course is comparatively slighter than that of organic matters in the upper courses. The oxidation rates related to the BOD were 15 %, 17 % and 26 % in the Bukhan River, Namhan River and the lower course, respectively. These results could be explained that more biodegradable organic matter were seen to have existed in the lower courses comparing to the activity in the upper course. The oxidation rates of the BOD were noted as relatively higher in the eutrophicated places with phytoplankton. Therefore the BOD is one of the good index models to find the characteristic of the eutrophicated water. On the other hand BOD would not be enough to estimate concentration of refractory organic matters in the Bukhan and Namhan river. Consequently, both of the TOC and BOD are necessary indices to understand the identified refractory and/or biodegradable characteristics of organic matter.

Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang (소양호에서 외부기원유기물의 유입, 유출 특성)

  • Park, Hae-Kyung;Kwon, Oh-youn;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

The Distribution Characteristics of Organic Matters in the Contaminated Tributaries of Han River Region (한강권역 우심지류 하천의 유기물 분포 특성)

  • Kim, Ho-Sub;Park, Yun-Hee;Kim, Yong-Sam;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.494-502
    • /
    • 2018
  • The purpose of this study was to understand distribution characteristics of organic matters through concentration of $BOD_5$, $COD_{Mn}$ and TOC in 31 streams in Han River region, and to establish the relationship among organic matter concentration, and discharge load and flow rate. Concentration of $BOD_5$ and TOC in 22 streams were above IV grade except 9, and the average 80.9 % of total organic matter (by TOC) accounted for dissolved organic type. Correlation among organic matter parameters were higher ($r^2$ > 0.78) and the relationship between TOC and $COD_{Mn}$ concentration was higher than $BOD_5$. Ratio of biodegradable organic matter/total organic matter in the 31 streams was estimated at 41.4 % with $BOD_5$ oxidation rate, and 78.0 % with $BOD_5/COD_{Mn}$ concentration ratio. Ratio of $NBOD/BOD_5$ concentration in four sites with $BOD_5/COD_{Mn}$ concentration ratio exceeding 1 ranged from 54.5 % ~ 79.3 %. Among 979 flow rate data measured at 31 streams, 87 % of measured data was below 0.1 cms and increased water pollution under low flow conditions. Correlation between $BOD_5$ concentration and $BOD_5$ discharge load in the watershed was low, and it was revealed that several streams have more $BOD_5$ delivery load than $BOD_5$ discharge load. Results suggest that many biodegradable forms of organic matter are being introduced into the stream from pollutant sources in the watershed.