• Title/Summary/Keyword: Organic light-emitting-diode display

Search Result 210, Processing Time 0.032 seconds

A Simple Structural Red Phosphorescent Organic Light-Emitting diodes with high-efficiency and low-voltage

  • Seo, Ji-Hyun;Jin, You-Young;Kim, Hoe-Min;Choi, Eun-Young;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.46-48
    • /
    • 2009
  • We demonstrated that the simple layered red phosphorescent organic light-emitting diodes are possible to have high efficiency and low driving voltage without hole injection and transport layers. The simplified OLED shows the max. current efficiency, power efficiency and quantum efficiency of 26.3 cd/A, 20.7 lm/W and 16.7 %, respectively.

  • PDF

Integration of 4.5' Active Matrix Organic Light-emitting Display with Organic Transistors

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.21-23
    • /
    • 2006
  • We developed a 4.5" 192${\times}$64 active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is 800${\mu}m$ and lO${\mu}m$ respectively and the driving OTFT has 1200${\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5$ $cm^2$/V·sec, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.

Study on Color Shifting Mechanism for Organic Light Emitting Diode with Red Dopant-doped Emitting Layer (적색 도펀트가 도핑된 발광층을 갖는 유기발광다이오드에서의 컬러 시프트 메커니즘 연구)

  • Lee, Ho-Nyeon;Oh, Tae-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4590-4599
    • /
    • 2011
  • The Color shift phenomenon is becoming a major degradation factor of the emitting color purity in the organic emitting diodes which is generating a plurality of colors. In this study, the basic structure of organic light emitting diode device is comprised of ITO/${\alpha}$-NPD/$Alq_3$:DCJTB[wt%]/$Alq_3$/Mg:Ag, we have carry out numerical simulation of the electric-optical characteristics in organic light emitting diode device to estimate the mechanism of color shift phenomenon. We have investigated the causes of the color shift through the change of DCJTB doping concentration ratio. As the result, we have confirmed that the changes of the recombination rate which generated by trapped electrons and holes is one of the major factors for the color shift phenomenon.

Comparison of Junction Temperature for Top-Emitting Organic Light-Emitting Diodes Fabricated on Different Substrates

  • Juang, Fuh-Shyang;Tsai, Yu-Sheng;Wang, Shun-Hsi;Chen, Chuan-Hung;Cheng, Chien-Lung;Liao, Teh-Chao;Chen, Guan-Wen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1148-1151
    • /
    • 2009
  • A self-designed, written in labview, Organic Light-Emitting Diode junction temperature measuring program was used to calculate the internal junction temperature for devices during operation, and an infrared thermometer was used to measure the backside temperature of the device substrate, to discuss the effects of the junction and substrate temperature difference to the characteristics of the device.

  • PDF

Novel Current Driving Circuit for Active Matrix Organic Light Emitting Diode

  • Yang, Yil-Suk;Roh, Tae-Moon;Lee, Dae-Woo;Kwon, Woo-H.;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.509-511
    • /
    • 2004
  • This paper describes a novel current driving circuit for an active matrix organic light emitting diode (AMOLED). The proposed current driving circuit has a lower power consumption and higher chip density for the AMOLED display compared with the conventional one because all elements operate at a normal voltage and are shielded from the high voltage of the panel. The chip size and power consumption of the current driving circuit for an AMOLED can be improved by about 30 to 40% and 10 to 20%, respectively, compared with the conventional one.

  • PDF

Ambipoalr light-emitting organic field-effect transistor using a wide-band-gap blue-emitting molecule

  • Sakanoue, Tomo;Yahiro, Masayuki;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.137-140
    • /
    • 2007
  • We prepared ambipolar organic field-effect transistors and observed blue emission when both hole and electron accumulation layers were in the channel. We found that the reduction of carrier traps and controlling devices' preparation and measurement conditions were crucial for ambipolar operation.

  • PDF

Pixel driving method of OLED(Organic Light-Emitting Diode) Display (OLED 디스플레이 픽셀 구동방식)

  • Lee Jung-Ho;Chae Kyu-Su;Kim Min-Nyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.154-156
    • /
    • 2004
  • 고도의 정보가 집약되고 응용되기 시작하면서 정보를 표현하고자 하는 방법에 대한 연구는 더욱 절실히 요구되고 있다. 자연색에 가까운 고품질의 색상의 화면을 제공하기 위해 디스플레이의 무게와 크기, 전력소모 등의 많은 부분에 대해 연구가 진행되고 있다. 본 논문에서는 이러한 모든 기능을 충족시켜주는 차세대 디스플레이인 OLED(Organic Light-Emitting Diode)에 대한 구동 드라이브를 디지털 회로에 응용하고자 정확한 동작에 필요한 방법에 대해 소개하고 개선점에 대한 연구를 하였다.

  • PDF

Stability of ITO/Buffer Layer/TPD/Alq3/Cathode Organic Light-emitting Diode

  • Chung, Dong-Hoe;Ahn, Joon-Ho;Oh, Hyun-Seok;Park, Jung-Kyu;Lee, Won-Jae;Choi, Sung-Jai;Jang, Kyung-Uk;Shin, Eun-Chul;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.260-264
    • /
    • 2007
  • We have studied stability in organic light-emitting diode depending on buffer layer and cathode. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. An electron injection energy barrier into organic material is different depending on a work function of cathodes. Theoretically, the energy barriers for the electron injection are 1.2 eV, -0.1 eV, and 0.0 eV for Al, LiAl, and LiF/Al at 300 K, respectively. We considered the cases that holes are injected to organic light-emitting diode. The hole injection energy barrier is about 0.7 eV between ITO and TPD without buffer layer. For hole-injection buffer layers of CuPc and PEDOT:PSS, the hole injection energy barriers are 0.4 eV and 0.5 eV, respectively. When the buffer layer of CuPc and PEDOT:PSS is existed, we observed the effects of hole injection energy barrier, and a reduction of operating-voltage. However, in case of PVK buffer layer, the hole injection energy barrier becomes high(1.0 eV). Even though the operating voltage becomes high, the efficiency is improved. A device structure for optimal lifetime condition is ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl at an initial luminance of $300cd/m^2$.